При экспоненциальном законе распределения времени восстановления и времени между отказами для расчета показателей надежности систем с восстановлением используют математический аппарат марковских случайных процессов. В этом случае функционирование систем описывается процессом смены состояний. Система изображается в виде графа, называемого графом переходов из состояния в состояние.

Случайный процесс в какой либо физической системе S , называется марковским , если он обладает следующим свойством: для любого момента t 0 вероятность состояния системы в будущем (t > t 0 ) зависит только от состояния в настоящем

(t = t 0 ) и не зависит от того, когда и каким образом система пришла в это состояние (иначе: при фиксированном настоящем будущее не зависит от предыстории процесса - прошлого).

t < t 0

t > t 0

Для марковского процесса «будущее» зависит от «прошлого» только через «настоящее», т. е. будущее протекание процесса зависит только от тех прошедших событий, которые повлияли на состояние процесса в настоящий момент.

Марковский процесс, как процесс без последействия, не означает полной независимости от прошлого, поскольку оно проявляется в настоящем.

При использовании метода, в общем случае, для системы S , необходимо иметь математическую модель в виде множества состояний системы S 1 , S 2 , … , S n , в которых она может находиться при отказах и восстановлениях элементов.

При составлении модели введены допущения:

Отказавшие элементы системы (или сам рассматриваемый объект) немедленно восстанавливаются (начало восстановления совпадает с моментом отказа);

Отсутствуют ограничения на число восстановлений;

Если все потоки событий, переводящих систему (объект) из состояния в состояние, являются пуассоновскими (простейшими), то случайный процесс переходов будет марковским процессом с непрерывным временем и дискретными состояниями S 1 , S 2 , … , S n .

Основные правила составления модели:

1. Математическую модель изображают в виде графа состояний, в которой

а) кружки (вершины графа S 1 , S 2 , … , S n ) – возможные состояния системы S , возникающие при отказах элементов;

б) стрелки – возможные направления переходов из одного состояния S i в другое S j .

Над/под стрелками указываются интенсивности переходов.

Примеры графа:

S0 – работоспособное состояние;

S1 – состояние отказа.

«Петлей» обозначаются задержки в том или ином состоянии S0 и S1 соответствующие:

Исправное состояние продолжается;

Состояние отказа продолжается.

Граф состояний отражает конечное (дискретное) число возможных состояний системы S 1 , S 2 , … , S n . Каждая из вершин графа соответствует одному из состояний.

2. Для описания случайного процесса перехода состояний (отказ/ восстановление) применяют вероятности состояний

P1(t), P2(t), … , P i (t), … , Pn(t) ,

где P i (t) – вероятность нахождения системы в момент t в i -м состоянии.

Очевидно, что для любого t

(нормировочное условие, поскольку иных состояний, кроме S 1 , S 2 , … , S n нет).

3. По графу состояний составляется система обыкновенных дифференциальных уравнений первого порядка (уравнений Колмогорова-Чепмена).

Рассмотрим элемент установки или саму установку без резервирования, которые могут находится в двух состояниях: S 0 -безотказное (работоспособное), S 1 - состояние отказа (восстановления).

Определим соответствующие вероятности состояний элемента Р 0 (t ): P 1 (t ) в произвольный момент времени t при различных начальных условиях. Эту задачу решим при условии, как ужу отмечалось, что поток отказов простейший с λ = const и восстановлений μ = const , закон распределения времени между отказами и времени восстановления – экспоненциальный.

Для любого момента времени сумма вероятностей P 0 (t ) + P 1 (t ) = 1 – вероятность достоверного события. Зафиксируем момент времени t и найдем вероятность P (t + ∆ t ) того, что в момент времени t + ∆ t элемент находится в работе. Это событие возможно при выполнении двух условий.

    В момент времени t элемент находился в состоянии S 0 и за время t не произошло отказа. Вероятность работы элемента определяется по правилу умножения вероятностей независимых событий. Вероятность того, что в момент t элемент был и состоянии S 0 , равна P 0 (t ). Вероятность того, что за время t он не отказал, равна е -λ∆ t . С точностью до величины высшего порядка малости можно записать

Поэтому вероятность этой гипотезы равна произведению P 0 (t ) (1- λ t ).

2. В момент времени t элемент находится в состоянииS 1 (в состоянии восстановления), за время t восстановление закончилось и элемент перешел в состояниеS 0 . Эту вероятность также определим по правилу умножения вероятностей независимых событий. Вероятность того, что в момент времени t элемент находился в состоянииS 1 , равна Р 1 (t ). Вероятность того, что восстановление закончилось, определим через вероятность противоположного события, т.е.

1 – е -μ∆ t = μ· t

Следовательно, вероятность второй гипотезы равна P 1 (t ) ·μ· t /

Вероятность рабочего состояния системы в момент времени (t + ∆ t ) определяется вероятностью суммы независимых несовместимых событий при выполнении обеих гипотиз:

P 0 (t +∆ t )= P 0 (t ) (1- λ t )+ P 1 (t ) ·μ t

Разделив полученное выражение на t и взяв предел при t → 0 , получим уравнение для первого состояния

dP 0 (t )/ dt =- λP 0 (t )+ μP 1 (t )

Проводя аналогичные рассуждения для второго состояния элемента – состояния отказа (восстановления), можно получить второе уравнение состояния

dP 1 (t )/ dt =- μP 1 (t )+λ P 0 (t )

Таким образом, для описания вероятностей состояния элемента получена система двух дифференциальных уравнений, граф состояний которого показан на рис.2

dP 0 (t )/ dt = - λ P 0 (t )+ μP 1 (t )

dP 1 (t )/ dt = λ P 0 (t ) - μP 1 (t )

Если имеется направленный граф состояний, то систему дифференциальных уравнений для вероятностей состояний Р К (к = 0, 1, 2,…) можно сразу написать, пользуясь следующим правилом: в левой части каждого уравнения стоит производная dP К (t )/ dt , а в правой – столько составляющих, сколько ребер связано непосредственно с данным состоянием; если ребро оканчивается в данном состоянии, то составляющая имеет знак плюс, если начинается из данного состояния, то составляющая имеет знак минус. Каждая составляющая равна произведению интенсивности потока событий переводящего элемент или систему по данному ребру в другое состояние, на вероятность того состояния, из которого начинается ребро.

Систему дифференциальных уравнений можно использовать для определения ВБР электрических систем, функции и коэффициента готовности, вероятности нахождения в ремонте (восстановлении) нескольких элементов системы, среднего времени пребывания системы в любом состоянии, интенсивности отказов системы с учетом начальных условий (состояний элементов).

При начальных условиях Р 0 (0)=1; Р 1 (0)=0 и (Р 0 1 =1), решение системы уравнений, описывающих состояние одного элемента имеет вид

P 0 (t ) = μ / (λ+ μ )+ λ/(λ+ μ )* e ^ -(λ+ μ ) t

Вероятность состояния отказа P 1 (t )=1- P 0 (t )= λ/(λ+ μ )- λ/ (λ+ μ )* e ^ -(λ+ μ ) t

Если в начальный момент времени элемент находился в состоянии отказа (восстановления), т.е. Р 0 (0)=0, Р 1 (0)=1 , то

P 0 (t) = μ/ (λ +μ)+ μ/(λ +μ)*e^ -(λ +μ)t

P 1 (t) = λ /(λ +μ)- μ/ (λ +μ)*e^ -(λ +μ)t


Обычно в расчетах показателей надежности для достаточно длительных интервалов времени (t ≥ (7-8) t в ) без большой погрешности вероятности состояний можно определять по установившимся средним вероятностям -

Р 0 (∞) = К Г = Р 0 и

Р 1 (∞) = К П 1 .

Для стационарного состояния (t →∞) P i (t) = P i = const составляется система алгебраических уравнений с нулевыми левыми частями, поскольку в этом случае dP i (t)/dt = 0. Тогда система алгебраических уравнений имеет вид:

Так как Кг есть вероятность того, что система окажется работоспособной в момент t при t , то из полученной системы уравнений определяетсяP 0 = Кг .,т.е вероятность работы элемента равна стационарному коэффициенту готовности, а вероятность отказа – коэффициенту вынужденного простоя:

lim P 0 (t ) = Кг = μ /(λ+ μ ) = T /(T + t в )

lim P 1 (t ) = Кп = λ /(λ+ μ ) = t в /(T + t в )

т.е., получился тот же результат, что и при анализе предельных состояний с помощью дифференциальных уравнений.

Метод дифференциальных уравнений может быть использован для расчета показателей надежности и невосстанавливаемых объектов (систем).

В этом случае неработоспособные состояния системы являются «поглощающими» и интенсивности μ выхода из этих состояний исключаются.

Для невосстанавливаемого объекта граф состояний имеет вид:

Система дифференциальных уравнений:

При начальных условиях: P 0 (0) = 1; P 1 (0) = 0 , используя преобразование Лапласа вероятности нахождения в работоспособном состоянии, т. е. ВБР к наработке t составит .

Изучается каждый основной компонент системы с целью определения путей его перехода в аварийное состояние. Анализ является преимущественно качественным и проводится по принципу «снизу вверх» при условии появления аварийных состояний «одно за раз».

Анализ видов, последствий и критичности отказов существенно более детален, чем анализ с помощью «дерева неисправностей», так как выявляются все возможные виды отказов или аварийные ситуации для каждого элемента системы.

Например, реле может отказать по следующим причинам:

– контакты не разомкнулись или не сомкнулись;

– запаздывание в замыкании или размыкании контактов;

– короткое замыкание контактов на корпус, источник питания, между контактами и в цепях управления;

– дребезг контактов (неустойчивый контакт);

– контактная дуга, генерирование помех;

– разрыв обмотки;

– короткое замыкание обмотки;

– низкое или высокое сопротивление обмотки;

– перегрев обмотки.

Для каждого вида отказа анализируются последствия, намечаются методы устранения или компенсации отказов и составляется перечень необходимых проверок.

Например, для баков, емкостей, трубопроводов этот перечень может быть следующим:

переменные параметры (расход, количество, температура, давление, насыщение и т. д.);

– системы (нагрева, охлаждения, электропитания, управления и т. д.);

– особые состояния (обслуживание, включение, выключение, замена содержимого и т. д.);

– изменение условий или состояния (слишком большие, слишком малые, гидроудар, осадок, несмешиваемость, вибрация, разрыв, утечка и т. д.).

Используемые при анализе формы документов подобны применяемым при выполнении предварительного анализа опасностей, но в значительной степени детализированы.

Анализ критичности предусматривает классификацию каждого элемента в соответствии со степенью его влияния на выполнение общей задачи системой. Устанавливаются категории критичности для различных видов отказов:

Метод не дает количественной оценки возможных последствий или ущерба, но позволяет ответить на следующие вопросы:

– какой из элементов должен быть подвергнут детальному анализу с целью исключения опасностей, приводящих к возникновению аварий;

– какой элемент требует особого внимания в процессе производства;

– каковы нормативы входного контроля;

– где следует вводить специальные процедуры, правила безопасности и другие защитные мероприятия;

– как наиболее эффективно затратить средства для предотвращения
аварий.

7.3.3. Анализ диаграммы всех возможных
последствий несрабатывания или аварии системы
(«дерево неисправностей»)

Данный метод анализа представляет собой совокупность приемов количественного и качественного характера для распознавания условий и факторов, которые могут привести к нежелательному событию («вершинному событию»). Учтенные условия и факторы выстраивают в графическую цепь. Начиная с вершины, выявляются причины или аварийные состояния следующих, более низких функциональных уровней системы. Анализируются многие факторы, включая взаимодействия людей и физические явления.

Внимание концентрируется на тех воздействиях неисправности или аварии, которые имеют непосредственное отношение к вершине событий. Метод особенно полезен для анализа систем с множеством областей контакта и взаимодействий.

Представление события в виде графической схемы приводит к тому, что можно без особого труда понять поведение системы и поведение включенных в него факторов. В связи с громоздкостью «деревьев» их обработка может потребовать применения компьютерных систем. Из-за громоздкости за­трудняется также проверка «дерева неисправностей».

В первую очередь метод используется при оценке риска для оценки вероятностей или частот неисправностей и аварий. В п 7.4 дано более детальное изложение метода.

7.3.4. Анализ диаграммы возможных последствий события
(«дерево событий»)

«Дерево событий» (ДС) – алгоритм рассмотрения событий, исходящих от основного события (аварийной ситуации). ДС используется для определения и анализа последовательности (вариантов) развития аварии, включающей сложные взаимодействия между техническими системами обеспечения безопасности. Вероятность каждого сценария развития аварийной ситуации рассчитывается путем умножения вероятности основного события на вероятность конечного события. При его построении используется прямая логика. Все значения вероятности безотказной работы P очень малы. «Дерево» не дает численных решений.

Пример 7.1. Допустим, путем выполнения предварительного анализа опасностей (ПАО) было выявлено, что критической частью реактора, т. е. подсистемой, с которой начинается риск, является система охлаждения реактора; таким образом, анализ начинается с просмотра последовательности возможных событий с момента разрушения трубопровода холодильной установки, называемого инициирующим событием, вероятность которого равна P(A) (рис. 7.1), т. е. авария начинается с разрушения (поломки) трубопровода – событие A .
Далее анализируются возможные варианты развития событий (B , C , D и E ), которые могут последовать за разрушением трубопровода. На рис. 7.1 изображено «дерево исходных событий», отображающее все возможные альтернативы.
На первой ветви рассматривается состояние электрического питания. Если питание есть, следующей подвергается анализу аварийная система охлаждения активной зоны реактора (АСОР). Отказ АСОР приводит к расплавлению топлива и к различным, в зависимости от целостности конструкции, утечкам радиоактивных продуктов.

Для анализа с использованием двоичной системы, в которой элементы либо выполняют свои функции, либо отказывают, число потенциальных отказов равно 2N – 1, где N – число рассматриваемых элементов. На практике исходное «дерево» можно упростить с помощью инженерной логики и свести к более простому дереву, изображенному в нижней части рис. 7.1.

В первую очередь представляет интерес вопрос о наличии электрического питания. Вопрос заключается в том, какова вероятность P B отказа электропитания и какое действие этот отказ оказывает на другие системы защиты. Если нет электрического питания, фактически никакие действия, предусмотренные на случай аварии с использованием для охлаждения активной зоны реактора распылителей, не могут производиться. В результате упрощенное «дерево событий» не содержит выбора в случае отсутствия электрического питания, и может произойти большая утечка, вероятность которой равна P A (P B ).

В случае, если отказ в подаче электрической энергии зависит от поломки трубопровода системы охлаждения реактора, вероятность P B следует подсчитывать как условную вероятность для учета этой зависимости. Если электрическое питание имеется, следующие варианты при анализе зависят от состояния АСОР. Она может работать или не работать, и ее отказ с вероятностью P C 1 ведет к последовательности событий, изображенной на рис. 7.1.

Рис. 7.1. «Дерево событий»

Следует обратить внимание на то, что для рассматриваемой системы возможны различные варианты развития аварии. Если система удаления радиоактивных материалов работоспособна, радиоактивные утечки меньше, чем в случае ее отказа. Конечно, отказ в общем случае ведет к последовательности событий с меньшей вероятностью, чем в случае работоспособности.

Рис. 7.2. Гистограмма вероятностей для различных величин утечек

Рассмотрев все варианты «дерева», можно получить спектр возможных утечек и соответствующие вероятности для различных последовательностей развития аварии (рис. 7.2). Верхняя линия «дерева» является основным вариантом аварии реактора. При данной последовательности предполагается, что трубопровод разрушается, а все системы обеспечения безопасности сохраняют работоспособность.

Методология FMEA, примеры

FMEA (Failure Mode and Effects Analysis) – это анализ видов и последствий отказов. Изначально разработанный и опубликованный военно-промышленным комплексом США (в форме стандарта MIL-STD-1629), анализ видов и последствий отказов является сегодня таким популярным, поскольку в некоторых отраслях промышленности разработаны и опубликованы специализированные стандарты, посвященные FMEA.

Несколько примеров таких стандартов:

  • MIL-STD-1629. Разработан в США и является родоначальником всех современных стандартов FMEA.
  • SAE-ARP-5580 – доработанный MIL-STD-1629, дополненный библиотекой некоторых элементов для автомобильной промышленности. Используется во многих отраслях.
  • SAE J1739 - стандарт FMEA, описывающий Анализ Видов и Последствий потенциальных Отказов при проектировании (Potential Failure Mode and Effects Analysis in Design, DFMEA) и Анализ Видов и Последствий потенциальных Отказов в производственных и сборочных процессах (Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes, PFMEA). Стандарт помогает определить и снизить риск, предоставляя соответствующие условия, требования, рейтинговые диаграммы и рабочие листы. Как стандарт этот документ содержит требования и рекомендации, направляющие пользователя в ходе выполнения FMEA.
  • AIAG FMEA-3 – специализированный стандарт, используемый в автомобильной индустрии.
  • Внутренние FMEA-стандарты крупных компаний-автопроизводителей.
  • Исторически развивавшиеся во многих компаниях и отраслях процедуры, схожие с анализом видов и последствий отказов. Возможно, на сегодня это и есть «стандарты» FMEA наиболее широкого охвата.

Все стандарты анализа видов и последствий отказов (опубликованные или развившиеся исторически), в целом, очень схожи между собой. Приведённое ниже общее описание даёт общее представление о FMEA как методологии. Оно намеренно выполнено на не слишком глубоком уровне и охватывает большинство используемых в настоящее время подходов к FMEA.

Прежде всего, должны быть чётко определены границы анализируемой системы. Система может представлять собой техническое устройство, процесс или что угодно ещё, подлежащее FME-анализу.

Далее идентифицируются виды возможных отказов, их последствия и возможные причины возникновения. В зависимости от размера, природы и сложности системы определение видов возможных отказов может быть выполнено для всей системы в целом или для каждой её подсистемы индивидуально. В последнем случае последствия отказов на уровне подсистемы будут проявляться, как виды отказов на уровень выше. Идентификация видов и последствий отказов должна быть выполнена методом «снизу-вверх», до достижения верхнего уровня системы. Для характеристики видов и последствий отказов, определённых на верхнем уровне системы, используются такие параметры, как интенсивность, критичность отказов, вероятность возникновения и т.п. Эти параметры могут быть или рассчитаны «снизу-вверх» с нижних уровней системы, или явно заданы на её верхнем уровне. Эти параметры могут носить как количественный, так и качественный характер. В результате для каждого элемента системы верхнего уровня рассчитывается своя уникальная мера, вычисляемая из этих параметров по соответствующему алгоритму. В большинстве случаев эту меру называют «коэффициентом приоритетности риска», «критичностью», «уровнем риска» или другим подобным образом. Способы использования такой меры и методики её вычисления могут быть уникальными в каждом конкретном случае и являются хорошей отправной точкой для того, чтобы многообразие современных подходов к проведению анализа видов и последствий отказов (FMEA).

Пример применения FMEA в ВПК

Назначение параметра «Критичность» - демонстрация того, что требования к безопасности системы полностью выполнены (в простейшем случае это означает, что все показатели критичности находятся ниже заранее определенного уровня.

Аббревиатура FMECA (Failure Mode, Effects and Criticality Analysis) обозначает «Анализ видов, последствий и критичности отказов».

Основными показателями, используемыми для расчета значения Критичности, являются:

  • интенсивность отказов (определенная с помощью расчёта наработок на отказ - MTBF),
  • вероятность отказа (в процентах от показателя интенсивности отказов),
  • время наработки.

Таким образом, очевидно, что параметр критичности имеет реальное точное значение для каждой конкретной системы (или её компонента).

Существует достаточно широкий спектр доступных каталогов (библиотек), содержащих вероятности отказов разных видов для различных электронных компонентов:

  • FMD 97
  • MIL-HDBK-338B
  • NPRD3

Дескриптор библиотеки по конкретному компоненту, в общем случае, выглядит следующим образом:

Поскольку для расчета параметра критичности отказа необходимо знать значения показателя интенсивности отказов, в военно-промышленном комплексе перед применением методологии FME[C]A выполняют расчет наработок на отказ по методике MTBF, результаты которого и использует FME[C]A. Для элементов системы, показатель критичности отказа которых превышает установленные требованиями безопасности допуски, должен проводиться также соответствующий Анализ дерева отказов (FTA, Fault Tree Analysis) . В большинстве случаев анализ видов, последствий и критичности отказов (FMEA) для потребностей ВПК выполняется одним специалистом (являющимся экспертом по проектированию электронных схем или специалистом по контролю их качества) или очень небольшой группой таких специалистов.

FMEA в автомобилестроении

Для каждого Коэффициента (или Числа) приоритетности риска (Risk Priority Number, RPN) отказа, превышающего предопределенный уровень (часто равный 60 или 125), определяются и проводятся корректирующие действия. Как правило, определяются ответственные за реализацию таких мер, сроки их реализации и способ последующей демонстрации эффективности предпринятых корректирующих действий. После выполнения корректирующих мероприятий проводятся повторная переоценка значения Коэффициента приоритетности риска отказа и его сопоставление с предельной установленной величиной.

Основными показателями, используемыми для расчета значения Коэффициента приоритетности риска, являются:

  • вероятность возникновения отказа,
  • критичность,
  • вероятность обнаружения отказа.

В большинстве случаев Коэффициент приоритетности риска выводится на базе значений указанных выше трех показателей (безразмерные значения которых лежат в границах от 1 до 10), т.е. является расчётной величиной, изменяющейся в подобных же границах. Однако, в случаях наличия фактических (ретроспективных) точных значений интенсивности возникновения отказов для конкретной системы, границы нахождения Коэффициента приоритетности риска могут быть многократно расширены, например:

В большинстве случаев анализ по методологии FMEA в автомобильной промышленности осуществляется внутренней рабочей группой представителей разных подразделений (НИОКР, производственных, сервисных, контроля качества).

Особенности методик анализа FMEA, FMECA и FMEDA

Методы анализа надёжности FMEA (анализ видов и последствий отказов), FMECA (анализ видов, последствий и критичности отказов) и FMEDA (анализ видов, последствий и диагностируемости отказов), хотя и имеют много общего, содержат несколько заметных различий

Тогда как FMEA - методология, позволяющая определить сценарии (способы), по которым продукт (оборудование), устройство противоаварийной защиты (ПАЗ), технологический процесс или система могут выйти из строя (см. стандарт IEC 60812 "Analysis techniques for system reliability - Procedure for failure mode and effects analysis (FMEA)"),

FMECA, в дополнение к FMEA, ранжирует идентифицированные виды отказов в порядке их важности (критичности) посредством вычисления одного из двух показателей - числа приоритетности риска (Risk Priority Number) или критичности (failure criticality) отказа,

а целью FMEDA является вычисление частоты (интенсивности) отказов (failure rate) конечной системы, в качестве которой может рассматриваться устройство или группа устройств, выполняющая более сложную функцию. Методология анализа видов, последствий и диагностируемости отказов FMEDA была сначала разработана для анализа электронных устройств, а впоследствии распространена на механические и электромеханические системы.

Общие понятия и подходы FMEA, FMECA и FMEDA

FMEA, FMECA и FMEDA используют общие базовые понятия компонентов, устройств и их компоновки (взаимодействия). Функция противоаварийной защиты (Safety Instrumented Function, SIF) состоит из нескольких устройств, которые должны обеспечить выполнение необходимой операции по защите машины, оборудования или технологического процесса от последствий опасности, сбоя. Примерами устройств ПАЗ могут служить преобразователь, изолятор, контактная группа и т.п.

Каждое устройство состоит из компонентов. Например, преобразователь может состоять из таких компонентов, как прокладки, болты, мембрана, электронная схема и т.д.

Сборка из устройств может рассматриваться, как одно комбинированное устройство, реализующее функцию ПАЗ. Например, привод-позиционер-клапан - это сборка устройств, которую совокупно можно рассматривать в качестве конечного элемента безопасности ПАЗ. Компоненты, устройства и сборки могут являться частями конечной системы для целей её оценки методами FMEA, FMECA или FMEDA.

Базовая методология, лежащая в основе FMEA, FMECA и FMEDA, может применяться до или во время проектирования, производства или окончательного монтажа конечной системы. Базовая методология рассматривает и анализирует виды отказов каждого компонента, являющегося частью каждого устройства, для оценки шанса отказа всех компонентов.

В случаях выполнения FME-анализа для сборки в дополнение к идентификации видов и последствий отказов должна быть разработана блок-схема (диаграмма) надёжности этой сборки для оценки взаимодействия устройств между собой (см. стандарт IEC 61078:2006 "Analysis techniques for dependability - Reliability block diagram and boolean methods").

Входные данные, результаты и оценки результатов выполнения FMEA, FMECA, FМEDA схематично показаны на картинке (справа). Увеличить картинку.

Общий подход определяет следующие основные шаги FME-анализа:

  • определение конечной системы и её структуры;
  • определение возможных сценариев для выполнения анализа;
  • оценка возможных ситуаций комбинаций сценариев;
  • выполнение FME-анализа;
  • оценка результатов FME-анализа (в т.ч. FMECA, FMEDA).

Применение к результатам анализа видов и последствий отказов (FMEA) методики FMECA даёт возможность оценки связанных с отказами рисков, а методики FMEDA - возможность оценки надёжности.

Для каждого простого устройства разрабатывается таблица FME, которая затем применяется каждого определённого сценария выполнения анализа. Структура таблицы FME может варьироваться для FMEA, FMECA или FMEDA, а также в зависимости от природы конечной анализируемой системы.

Результатом выполнения анализа видов и последствий отказов является отчет, содержащий все выверенные (при необходимости, скорректированные рабочей группой экспертов) FME-таблицы и выводы / суждения / решения, касающиеся конечной системы. Если после выполнения FME-анализа конечная система модифицируется, процедуру FMEA необходимо выполнить повторно.

Различия оценок и результатов FME-, FMEC- и FMED-анализа

Хотя основные шаги при выполнении FME-анализа, в целом, одинаковы для FMEA, FMECA и FMEDA, оценка и результаты различаются.

Результаты выполнения анализа FMECA включают результаты FMEA, а также ранжирование всех видов и последствий отказов. Это ранжирование используется для определения компонентов (или устройств) с более высокой степенью влияния на надёжность конечной (целевой) системы, характеризуемую такими показателями безопасности, таких как средняя вероятность отказа по требованию (PFDavg), средняя опасная частота отказа (PFHavg).), среднее время наработки на отказ (MTTFs) или среднее время до опасного отказа (MTTFd).

Результаты FMECA могут использоваться для качественной или количественной оценки, и в обоих случаях они должны быть представлены матрицей критичности конечной системы, показывающей в графическом виде, какие компоненты (или устройства) оказывают большее / меньшее влияние на надежность конечной (целевой) системы.

Результаты FMEDA включают результаты FMEA и данные о надежности конечной системы. Они могут использоваться для проверки соответствия системы целевому уровню SIL, сертификации SIL или в качестве основания при расчете целевого SIL устройства ПАЗ .

FMEDA предоставляет количественные оценки таких показателей надежности, как:

  • Safe detected failure rate (интенсивность диагностируемых / обнаруживаемых безопасных отказов) - частота (интенсивность) отказов конечной системы, переводящих её рабочее состояние из нормального в безопасное. Система или оператор ПАЗ уведомлены, целевая установка или оборудование защищены;
  • Safe undetected failure rate (интенсивность недиагностируемых / необнаруживаемых безопасных отказов) - частота (интенсивность) отказов конечной системы, переводящих её рабочее состояние из нормального в безопасное. Система или оператор ПАЗ не уведомлены, целевая установка или оборудование защищены;
  • Dangerous detected failure rate (интенсивность диагностируемых / обнаруживаемых опасных отказов) - частота (интенсивность) отказов конечной системы, при которой она будет оставаться в нормальном состоянии, когда возникнет необходимость, но система или оператор ПАЗ уведомлены для устранения проблемы или выполнения технического обслуживания. Целевая установка или оборудование не защищены, но проблема идентифицирована, и есть шанс устранить неисправность до того, как возникнет необходимость;
  • Dangerous undetected failure rate (интенсивность недиагностируемых / необнаруживаемых опасных отказов) - частота (интенсивность) отказов конечной системы, при которой она будет оставаться в нормальном состоянии, когда возникнет необходимость, но система или оператор ПАЗ не уведомлены. Целевая установка или оборудование не защищены, проблема является скрытой, и единственным способом выявления и устранения неисправности является выполнение контрольного теста (проверки). При необходимости оценка FMEDA может выявить, какая часть недиагностируемых опасных отказов может быть идентифицирована с помощью контрольного теста. Другими словами, оценка FMEDA помогает обеспечить показатели Эффективности контрольного теста (Et) или Покрытия контрольного теста (PTC) при выполнении контрольного тестирования (проверки) конечной системы;
  • Annunciation failure rate (интенсивность отказов-оповещений) - частота (интенсивность) отказов конечной системы, которая не повлияет на показатели безопасности при переводе её рабочего состояния из нормального в безопасное состояние;
  • No effect failure rate (интенсивность отказов без последствий) - частота (интенсивность) любых других отказов, которые не приведут к переходу рабочего состояния конечной системы из нормального в безопасное или опасное.

Компания KConsult C.I.S. предлагает профессиональные услуги сертифицированных европейских инженеров-практиков по выполнению анализа FMEA, FMECA, FMEDA, а также внедрению методологии FMEA в повседневную деятельность промышленных предприятий.

При разработке и производстве различного оборудования периодически возникают дефекты. Что в результате? Производитель несет значительные убытки, связанные с дополнительными тестами, проверками и изменениями проекта. Однако это — не бесконтрольный процесс. Оценить возможные угрозы и уязвимости, а также проанализировать потенциальные дефекты, которые могут помешать работе оборудования, можно с помощью анализа FMEA.

Впервые данный метод анализа был использован в США в 1949 году. Тогда его применяли исключительно в военной промышленности при проектировании нового вооружения. Однако уже в 70-х идеи FMEA оказались в крупных корпораций. Одной из первых данную технологию внедрила компания Ford (на тот момент — крупнейший производитель автомобилей).

В наши дни метод FMEA-анализа используется практически всеми машиностроительными предприятиями. Основные принципы риск-менеджмента и анализа причин отказов описаны в ГОСТ Р 51901.12-2007.

Определение и суть метода

FMEA — аббревиатура от Failure Mode and Effect Analysis. Это — технология анализа разновидностей и последствий возможных отказов (дефектов, по причине которых объект теряет возможность выполнять свои функции). Чем хорош данный метод? Он дает предприятию возможность предвидеть возможные проблемы и неполадки еще на В ходе анализа производитель получает такую информацию:

  • перечень потенциальных дефектов и неисправностей;
  • анализ причин их возникновения, тяжести и последствий;
  • рекомендации по снижению рисков в порядке приоритетности;
  • общая оценка безопасности и надежности продукции и системы в целом.

Данные, полученные в результате анализа, документируются. Все обнаруженные и изученные отказы классифицируют по степени критичности, легкости обнаружения, ремонтопригодности и частоте возникновения. Основная задача — выявить проблемы до того, как они возникнут и начнут влиять на клиентов компании.

Сфера применения FMEA-анализа

Этот способ исследования активно используется практически во всех технических отраслях, таких как:

  • автомобиле- и кораблестроение;
  • авиационная и космическая промышленность;
  • химическая и нефтеперерабатывающая;
  • строительство;
  • изготовление промышленного оборудования и механизмов.

В последние годы этот метод оценки рисков все чаще применяется и в непроизводственной сфере — например в менеджменте и маркетинге.

FMEA может проводиться на всех этапах жизненного цикла товара. Однако чаще всего анализ выполняется на этапе разработки и модификации продукции, а также при использовании уже существующих конструкций в новой среде.

Виды

С помощью технологии FMEA изучают не только различные механизмы и устройства, но также процессы управления компанией, производства и эксплуатации продукции. В каждом случае метод имеет свои специфические особенности. Объектом анализа могут быть:

  • технические системы;
  • конструкции и изделия;
  • процессы производства, комплектации, установки и обслуживания продукции.

При обследовании механизмов определяют риск несоответствия нормам, возникновения неполадок в процессе работы, а также поломки и снижение срока службы. При этом учитываются свойства материалов, геометрия конструкции, ее характеристики, интерфейсы взаимодействия с другими системами.

FMEA-анализ процесса позволяет обнаружить несоответствия, влияющие на качество и безопасность продукции. Также учитываются удовлетворенность покупателей и экологические риски. Здесь проблемы могут возникать со стороны человека (в частности сотрудников предприятия), технологии производства, используемого сырья и оборудования, измерительных систем, влияния на окружающую среду.

При проведении исследования используются разные подходы:

  • "сверху вниз" (от крупных систем к мелким деталям и элементам);
  • "снизу вверх" (от отдельных изделий и их частей до

Выбор зависит от целей проведения анализа. Он может быть частью комплексного исследования в дополнение к другим методам или применяться как самостоятельный инструмент.

Этапы проведения

Вне зависимости от конкретных задач, FMEA-анализ причин и последствий возникновения отказов проводится по универсальному алгоритму. Рассмотрим детальнее этот процесс.

Подготовка экспертной группы

Прежде всего нужно определиться, кто будет проводить исследование. Командная работа — один из ключевых принципов FMEA. Только такой формат обеспечивает качество и объективность экспертизы, а также создает пространство для нестандартных идей. Как правило, команда состоит из 5-9 человек. В нее входят:

  • руководитель проекта;
  • инженер-технолог, выполняющий разработку технологического процесса;
  • инженер-конструктор;
  • представитель производства или ;
  • сотрудник отдела работы с потребителями.

В случае необходимости для анализа конструкций и процессов могут привлекаться квалифицированные специалисты из сторонних организаций. Обсуждение возможных проблем и путей их решения происходит на серии заседаний длительностью до 1,5 часов. Они могут проводиться как в полном, так и в неполном составе (если присутствие определенных экспертов не нужно для решения текущих вопросов).

Изучение проекта

Для проведения анализа FMEA нужно четко обозначить объект исследования и его границы. Если мы говорим о технологическом процессе, следует обозначить начальное и завершающее события. Для оборудования и конструкций все проще — можно рассматривать их как комплексные системы или сосредоточиться на конкретных механизмах и элементах. Несоответствия можно рассматривать с учетом потребностей потребителя, этапа жизненного цикла товара, географии использования и т. д.

На этом этапе члены экспертной группы должны получить подробное описание объекта, его функций и принципов работы. Объяснения должны быть доступными и понятными всем членам команды. Обычно на первой сессии проводятся презентации, эксперты изучают инструкции по изготовлению и эксплуатации конструкций, плановые параметры, нормативную документацию, чертежи.

#3: Составление списка потенциальных дефектов

После теоретической части команда приступает к оценке возможных отказов. Составляется полный перечень всех возможных несоответствий и дефектов, которые могут возникнуть на объекте. Они могут быть связаны с поломкой отдельных элементов либо их неправильным функционированием (недостаточная мощность, неточность, малая производительность). При анализе процессов нужно перечислить конкретные технологические операции, при выполнении которых есть риск ошибок — например невыполнения или неправильного выполнения.

Описание причин и последствий

Следующий шаг — углубленный анализ подобных ситуаций. Основная задача — понять, что может привести к возникновению тех или иных ошибок, а также то, как обнаруженные дефекты могут повлиять на работников, потребителей и компанию в целом.

Для определения вероятных причин дефектов команда изучает описания операций, утвержденные требования к их выполнению, а также статистические отчеты. В протоколе FMEA-анализа также можно указать факторы риска, которые предприятие может корректировать.

Одновременно команда обдумывает, что можно предпринять, чтобы исключить шанс возникновения дефектов, предлагает методы контроля и оптимальную периодичность проверок.

Экспертные оценки

  1. S — Severity/Значимость. Определяет, насколько тяжелыми будут последствия данного дефекта для потребителя. Оценивается по 10-балльной шкале (1 — практически не влияют, 10 — катастрофические, при которых производитель или поставщик могут понести уголовное наказание).
  2. O — Occurrence/Вероятность. Показывает, как часто возникает определенное нарушение и может ли ситуация повториться (1 — крайне маловероятно, 10 — отказ наблюдается более чем в 10% случаев).
  3. D — Detection/Обнаружение. Параметр для оценки методов контроля: помогут ли они своевременно выявить несоответствие (1 — почти гарантированно обнаружат, 10 — скрытый дефект, который невозможно выявить до наступления последствий).

На основе этих оценок определяют приоритетное число рисков (ПЧР) для каждого вида отказа. Это обобщенный показатель, который позволяет выяснить, какие поломки и нарушения несут в себе наибольшую угрозу для фирмы и ее клиентов. Рассчитывается по формуле:

ПЧР = S × O × D

Чем выше ПЧР — тем опаснее нарушение и разрушительнее его последствия. В первую очередь необходимо устранить или снизить риск дефектов и неполадок, у которых данное значение превышает 100-125. От 40 до 100 баллов набирают нарушения, имеющие средний уровень угрозы, а ПЧР менее 40 говорит о том, что сбой незначительный, возникает редко и может быть без проблем обнаружен.

После оценки отклонений и их последствий, рабочая группа FMEA определяет приоритетные направления работы. Первоочередная задача заключается в том, чтобы составить план корректировочных мероприятий для "узких мест" — элементов и операций с самыми высокими показателями ПЧР. Чтобы снизить уровень угрозы, необходимо повлиять на один или несколько параметров:

  • устранить первоначальную причину возникновения отказа, изменив конструкцию или процесс (оценка O);
  • предотвратить появление дефекта с помощью методов статистического регулирования (оценка О);
  • смягчить негативные последствия для покупателей и заказчиков — например снизить цены на бракованную продукцию (оценка S);
  • внедрить новые инструменты для своевременного обнаружения неисправностей и последующего ремонта (оценка D).

Чтобы предприятие могло сразу приступить к выполнению рекомендаций, команда FMEA одновременно разрабатывает план их внедрения с указанием последовательности и сроков выполнения каждого вида работ. В этом же документе содержится информация об исполнителях и ответственных за проведение корректировочных мероприятий, источниках финансирования.

Подведение итогов

Заключительный этап — подготовка отчета для руководителей компании. Какие разделы он должен содержать?

  1. Обзор и подробные заметки о ходе исследования.
  2. Потенциальные причины возникновения дефектов при производстве/эксплуатации оборудования и выполнении технологических операций.
  3. Список вероятных последствий для сотрудников и потребителей — отдельно для каждого нарушения.
  4. Оценка уровня риска (насколько опасны возможные нарушения, какие из них могут привести к серьезным последствиям).
  5. Перечень рекомендаций для службы техобслуживания, проектировщиков и специалистов в сфере планирования.
  6. График проведения и отчеты о проведении корректировочных мероприятий на основе результатов анализа.
  7. Список потенциальных угроз и последствий, которые удалось устранить за счет изменения проекта.

К отчету прилагают все таблицы, графики и диаграммы, которые служат для визуализации информации об основных проблемах. Также рабочая группа должна предоставить использованные схемы оценки несоответствий по значимости, частоте и вероятности обнаружения с подробной расшифровкой шкалы (что означает то или иное количество баллов).

Как заполнять протокол FMEA?

В ходе исследования все данные должны фиксироваться в специальном документе. Это «Протокол анализа причин и последствий FMEA». Он представляет собой универсальную таблицу, куда вносится вся информация о вероятных дефектах. Данная форма подходит для исследования любых систем, объектов и процессов в любых отраслях промышленности.

Первая часть заполняется на основе личных наблюдений членов команды, изучения статистики предприятия, рабочих инструкций и другой документации. Основная задача - понять, что может помешать работе механизма или выполнению какой-либо задачи. На заседаниях рабочая группа должна оценить последствия этих нарушений, ответить, насколько они опасны для работников и потребителей и какова вероятность, что дефект будет обнаружен еще на стадии производства.

Во второй части протокола описываются варианты предотвращения и устранения несоответствий, перечень мероприятий, разработанных FMEA-командой. Отдельная графа предусмотрена для назначения ответственных за реализацию тех или иных задач, а после внесения корректировок в конструкцию или организацию бизнес-процесса руководитель указывает в протоколе список выполненных работ. Заключительный этап - повторное выставление оценок с учетом всех изменений. Сравнив изначальные и итоговые показатели, можно сделать вывод об эффективности выбранной стратегии.

Для каждого объекта создается отдельный протокол. В самом верху находится название документа — "Анализ типов и последствий потенциальных дефектов". Чуть ниже указываются модель оборудования или название процесса, даты проведения предыдущей и следующей (по графику) проверок, актуальная дата, а также подписи всех участников рабочей группы и ее руководителя.

Пример FMEA-анализа ("Тулиновский приборостроительный завод")

Рассмотрим, как происходит процесс оценки потенциальных рисков на опыте крупной российской промышленной компании. В свое время руководство "Тулиновского приборостроительного завода" (ОАО "ТВЕС") столкнулось с проблемой градуировки электронных весов. Предприятие выпускало большой процент некорректно работающего оборудования, которое отдел технического контроля был вынужден отправлять обратно.

После изучения последовательности действий и требований к процедуре градуировки команда FMEA выделила четыре подпроцесса, которые сильнее всего влияли на качество и точность градуировки.

  • перемещение и установка прибора на стол;
  • проверка положения по уровню (весы должны располагаться 100% горизонтально);
  • расстановка грузов в платформы;
  • регистрация частотных сигналов.

Какие виды отказов и неполадок были зафиксированы при выполнении данных операций? Рабочая группа выделила основные риски, проанализировала причины их возникновения и возможные последствия. На основе экспертных оценок были рассчитаны показатели ПЧР, что дало возможность определить основные проблемы — отсутствие четкого контроля за выполнением работ и состоянием оборудования (стенда, гирь).

Этап Сценарий отказа Причины Последствия S O D ПЧР
Перемещение и установка весов на стенд. Риск падения весов из-за большого веса конструкции. Отсутствует специализированный транспорт. Повреждение или поломка устройства. 8 2 1 16
Проверка горизонтального положения по уровню (устройство должно стоять абсолютно ровно). Некорректная градуировка. Столешница стенда не была выверена по уровню. 6 3 1 18
Сотрудники не следуют рабочим инструкциям. 6 4 3 72
Расстановка грузов в реперных точках платформы. Использование грузов неподходящего размера. Эксплуатация старых, изношенных гирь. ОТК возвращает брак из-за метрологического несоответствия. 9 2 3 54
Отсутствие контроля за процессом расстановки. 6 7 7 252
Механизм или датчики стенда вышли из строя. Гребенки подвижного каркаса перекошены. От постоянного трения гири быстро изнашиваются. 6 2 8 96
Оборвался трос. Приостановка производства. 10 1 1 10
Вышел из строя мотор-редуктор. 2 1 1 2
Не соблюдается график плановых осмотров и ремонта. 6 1 2 12
Регистрация частотных сигналов датчика. Программирование. Потеря данных, которые вносились в запоминающее устройство. Перебои с электричеством. Нужно проводить градуировку повторно. 4 2 3 24

Для устранения факторов риска были разработаны рекомендации по дополнительному обучению сотрудников, модификации столешницы стенда и покупке специального роликового контейнера для перевозки весов. Покупка блока бесперебойного питания решила проблему с утратой данных. А чтобы предупредить возникновение проблем с градуировкой в будущем, рабочая группа предложила новые графики техобслуживания и плановой калибровки гирь — проверки начали проводить чаще, за счет чего повреждения и сбои можно обнаружить гораздо раньше.

F MEA анализ на сегодняшний день признан одним из наиболее эффективных инструментов для повышения качества и надежности разрабатываемых объектов. Он направлен в первую очередь на предупреждение появления возможных дефектов, а также на снижение размера ущерба и вероятности его появления.

Анализ видов и последствий отказов FMEA с целью снижения рисков успешно применяется во всем мире на предприятиях различных отраслей. Это универсальный метод, применимый не только для каждого объекта производства, но и практически для любой деятельности или отдельных процессов. Везде, где есть риск возникновения дефектов или отказов, FMEA анализ позволяет оценить потенциальную угрозу и выбрать наиболее приемлемый вариант.

Терминология FMEA

Основными понятиями, на которых опирается концепция анализа, являются определения дефекта и отказа. Имея общий результат в виде негативных последствий, они, тем не менее, существенно отличаются. Так, дефект является негативным результатом прогнозируемого использования объекта, в то время как отказ - это незапланированное или ненормальное функционирование в процессе производства или эксплуатации. Кроме того существует также термин несоответствие, означающий невыполнение запланированных условий или требований.

Негативным результатам, вероятность которых анализирует метод FMEA , выставляются оценки, которые условно можно разделить на количественные и экспертные. К количественным оценкам относят вероятность возникновения, вероятность обнаружения дефекта, измеряемые в процентах. Экспертные оценки выставляются в баллах для вероятности возникновения и обнаружения дефекта, а также для его значимости.

Итоговыми показателями анализа являются комплексный риск дефекта, а также приоритетное число риска, являющиеся общей оценкой значимости дефекта или отказа.

Этапы анализа

В кратких чертах метод FMEA анализа состоит из следующих этапов:

  • 1. Формирование команды
  • 2. Выбор объекта анализа. Определение границ каждой части составного объекта
  • 3. Определение вариантов применения анализа
  • 4. Выбор типов рассматриваемых несоответствий исходя из ограничений по срокам, типу потребителей, географическим условиям и т.д.
  • 5. Утверждение формы, в которой будут предоставлены результаты анализа.
  • 6. Обозначение элементов объекта, в которых могут возникать отказы или дефекты.
  • 7. Составление списка наиболее значимых возможных дефектов для каждого элемента
  • 8. Определение возможных последствий для каждого из дефектов
  • 9. Оценка вероятности возникновения, а также тяжести последствий для всех дефектов
  • 10. Вычисление приоритетного числа риска для каждого дефекта.
  • 11. Ранжирование потенциальных отказов/дефектов по значимости
  • 12. Разработка мероприятий по снижению вероятности возникновения или тяжести последствий, путем изменения проекта или процесса производства
  • 13. Перерасчет оценок

При необходимости п. 9-13 повторяются до тех пора, пока не будет получен приемлемый показатель приоритетного числа риска для каждого из значимых дефектов.

Виды анализа

В зависимости от стадии разработки продукта и от объекта анализа метод FMEA делится на следующие виды:

  • SFMEA или анализ взаимодействия между собой отдельных элементов целой системы
  • DFMEA анализ — мероприятие для предупреждения запуска в производство недоработанной конструкции
  • PFMEA анализ позволяет отработать и довести до применимого состояния процессы

Цели применения FMEA анализа

Используя метод FMEA анализа на производственном предприятии можно добиться следующих результатов:

  • снижение себестоимости продукции, а также улучшение ее качества путем оптимизации производственного процесса;
  • сокращение послепродажных затрат на ремонт и сервисное обслуживание;
  • уменьшение сроков подготовки производства;
  • сокращение количества доработок продукции после старта производства;
  • рост удовлетворенности потребителя и, как следствие, повышение репутации производителя.

Особенность состоит в том, что анализ видов и последствий отказов FMEA в краткосрочном периоде может не дать ощутимых финансовых преимуществ или вовсе быть затратным. Однако в стратегическом планировании он играет решающую роль, так как, проведенный лишь на стадии подготовки к производству, впоследствии будет приносить экономическую выгоду на протяжении всего жизненного цикла продукта. Кроме того, затраты от негативных последствий дефектов, зачастую, могут быть выше, чем конечная стоимость продукта. В пример можно привести авиационную промышленность, где от надежности каждой детали зависят сотни человеческих жизней.