Минерал из класса самородных элементов. В природном минерале обнаруживаются Fe, Ag, Au, As и другие элементы в виде примеси или образующие с Cu твёрдые растворы. Простое вещество медь - это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. Он входит в семёрку металлов, известных человеку с очень древних времён. Медь является необходимым элементом для всех высших растений и животных.

Смотрите так же:

СТРУКТУРА

Кубическая сингония, гексаоктаэдрический вид симметрии m3m, кристаллическая структура — кубическая гранецентрированная решётка. Модель представляет собой куб из восьми атомов в углах и шести атомов, расположенных в центре граней (6 граней). Каждый атом данной кристаллической решетки имеет координационное число 12. Самородная медь встречается в виде пластинок, губчатых и сплошных масс, нитевидных и проволочных агрегатов, а также кристаллов, сложных двойников, скелетных кристаллов и дендритов. Поверхность часто покрыта плёнками «медной зелени» (малахит), «медной сини» (азурит), фосфатов меди и других продуктов её вторичного изменения.

СВОЙСТВА

Медь - золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь - один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C: 55,5-58 МСм/м. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры. Медь является диамагнетиком.

Существует ряд сплавов меди: латуни - с цинком, бронзы - с оловом и другими элементами, мельхиор - с никелем и другие.

ЗАПАСЫ И ДОБЫЧА

Среднее содержание меди в земной коре (кларк) - (4,7-5,5)·10 −3 % (по массе). В морской и речной воде содержание меди гораздо меньше: 3·10 −7 % и 10 −7 % (по массе) соответственно. Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т, из них 687 млн т - подтверждённые запасы, на долю России приходилось 3,2 % общих и 3,1 % подтверждённых мировых запасов. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.
Медь получают из медных руд и минералов. Основные методы получения меди - пирометаллургия, гидрометаллургия и электролиз. Пирометаллургический метод заключается в получении меди из сульфидных руд, например, халькопирита CuFeS 2 . Гидрометаллургический метод заключается в растворении минералов меди в разбавленной серной кислоте или в растворе аммиака; из полученных растворов медь вытесняют металлическим железом.

ПРОИСХОЖДЕНИЕ

Небольшой самородок меди

Обычно самородная медь образуется в зоне окисления некоторых медносульфидных месторождений в ассоциации с кальцитом, самородным серебром, купритом, малахитом, азуритом, брошантитом и другими минералами. Массы отдельных скоплений самородной меди достигают 400 тонн. Крупные промышленные месторождения самородной меди вместе с другими медьсодержащими минералами формируются при воздействии на вулканические породы (диабазы, мелафиры) гидротермальных растворов, вулканических паров и газов, обогащенных летучими соединениями меди (например, месторождение озера Верхнее, США).
Самородная медь встречается также в осадочных породах, преимущественно в медистых песчаниках и сланцах.
Наиболее известные месторождения самородной меди — Туринские рудники (Урал), Джезказганское (Казахстан), в США (на полуострове Кивино, в штатах Аризона и Юта).

ПРИМЕНЕНИЕ

Из-за низкого удельного сопротивления, медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов и силовых трансформаторов.
Другое полезное качество меди - высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления.
В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы.
В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото очень мягкий металл и нестойко к этим механическим воздействиям.
Прогнозируемым новым массовым применением меди обещает стать её применение в качестве бактерицидных поверхностей в лечебных учреждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц - всех поверхностей, к которым прикасается рука человека.

Медь (англ. Copper) — Cu

КЛАССИФИКАЦИЯ

Hey’s CIM Ref1.1

Strunz (8-ое издание) 1/A.01-10
Nickel-Strunz (10-ое издание) 1.AA.05
Dana (7-ое издание) 1.1.1.3
Dana (8-ое издание) 1.1.1.3

История меди

Медь называют одним из первых металлов, которые человек освоил в древности и пользуется им до сегодняшнего дня. Добыча меди была доступной, потому что руду необходимо было плавить при сравнительно невысокой температуре. Первой рудой, из которой стали добывать медь, была малахитовая руда (calorizator). Каменный век в истории человечества сменился именно медным, когда предметы быта, орудия труда и оружие из меди получили самое широкое распространение.

Медь является элементом XI группы IV периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 29 и атомную массу 63,546. Принятое обозначение - Cu (от латинского Cuprum).

Нахождение в природе

Медь достаточно широко представлена в земной коре, в осадочных породах, в водах морских и пресных водоёмах, в сланцах. Распространена как в виде соединений, так и в самостоятельном варианте.

Физические и химические свойства

Медь является пластичным, так называемым переходным металлом, имеет золотисто-розовый цвет. При контакте с воздухом на поверхности меди образуется оксидная плёнка, придающая металлу желтовато-красный оттенок. Известны основные сплавы меди - с цинком (латунь), с оловом (бронза), с никелем (мельхиор).

Суточная потребность в меди

Потребность в меди у взрослого человека составляет 2 мг в день (около 0,035 мг/ 1 кг веса).

Медь - один из самых важных микроэлементов для организма, поэтому продукты питания, богатые медью, должны быть в рационе каждого. Это:

  • орехи, злаки,
  • рыба,
  • крупы (особенно и ),
  • кисломолочные продукты
  • , ягоды и


Признаки нехватки меди

Признаками недостаточного количества меди в организме служат: анемия и ухудшение дыхания, потеря аппетита, расстройства желудка, нервозность, депрессивные состояния, быстрая утомляемость, нарушения пигментации кожи и волос, ломкость и выпадение волос, сыпи на кожных покровах, частые инфекции. Возможны внутренние кровотечения.

Признаки избытка меди

Переизбыток меди характеризуется бессонницей, нарушениями мозговой активности, эпилепсией, проблемами с менструальным циклом.

Взаимодействия с другими

Предполагается, что медь и конкурируют друг с другом в процессе усваивания в пищеварительном тракте, поэтому избыток одного из этих элементов в пище может вызвать недостаток другого элемента.

Медь имеет огромное значение в народном хозяйстве, её основное применение - электротехника, но металл широко используется для чеканки монет, часто - в произведениях искусства. Медь также используется в медицине, архитектуре и строительстве.

Полезные свойства меди и его влияние на организм

Требуется для превращения организма в гемоглобин. Делает возможным использование аминокислоты тирозин, позволяя ей проявлять свое действие как фактору пигментации волос и кожи. После усваивания меди кишечником она транспортируется к печени с помощью альбумина. Медь также участвует в процессах роста и размножения. Принимает участие в образовании коллагена и эластина и синтезе эндорфинов - гормонов «счастья».

  • Обозначение - Cu (Copper);
  • Период - IV;
  • Группа - 11 (Ib);
  • Атомная масса - 63,546;
  • Атомный номер - 29;
  • Радиус атома = 128 пм;
  • Ковалентный радиус = 117 пм;
  • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 ;
  • t плавления = 1083,4°C;
  • t кипения = 2567°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,90/1,75;
  • Степень окисления: +3, +2, +1, 0;
  • Плотность (н. у.) = 8,92 г/см 3 ;
  • Молярный объем = 7,1 см 3 /моль.

Медь (купрум, свое название получила в честь острова Кипр, где было открытое крупное медное месторождение) является одним из первых металлов, который освоил человек - Медный век (эпоха, когда в обиходе человека преобладали медные орудия) охватывает период IV-III тысячелетия до н. э.

Сплав меди с оловом (бронза) был получен на Ближнем Востоке за 3000 лет до н. э. Бронза была предпочтительней меди, поскольку была более прочна и лучше поддавалась ковке.


Рис. Строение атома меди .

Электронная конфигурация атома меди - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 (см. Электронная структура атомов). У меди один спаренный электрон с внешнего s-уровня "перескакивает" на d-подуровень предвнешней орбитали, что связано с высокой устойчивостью полностью заполненного d-уровня. Завершенный устойчивый d-подуровень меди обусловливает ее относительную химическую инертность (медь не реагирует с водородом, азотом, углеродом, кремнием). Медь в соединениях может проявлять степени окисления +3, +2, +1 (наиболее устойчивые +1 и +2).


Рис. Электронная конфигурация меди.

Физические свойства меди:

  • металл, красно-розового цвета;
  • обладает высокой ковкостью и пластичностью;
  • хорошей электропроводностью;
  • малым электрическим сопротивлением.

Химические свойства меди

  • при нагревании реагирует с кислородом:
    O 2 + 2Cu = 2CuO;
  • при длительном пребывании на воздухе реагирует с кислородом даже при комнатной температуре:
    O 2 + 2Cu + CO 2 + H 2 O = Cu(OH) 2 ·CuCO 3 ;
  • вступает в реакции с азотной и концентрированной серной кислотой:
    Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O;
  • с водой, растворами щелочей, соляной и разбавленной серной кислотой медь не реагирует.

Соединения меди

Оксид меди CuO (II) :

  • твердое вещество красно-коричневого цвета, не растворимое в воде, проявляет основные свойства;
  • при нагревании в присутствии восстановителей дает свободную медь:
    CuO + H 2 = Cu + H 2 O;
  • оксид меди получают взаимодействием меди с кислородом или разложением гидроксида меди (II):
    O 2 + 2Cu = 2CuO; Cu(OH) 2 = CuO + H 2 O.

Гидроксид меди Cu(OH 2)(II ):

  • кристаллическое или аморфное вещество голубого цвета, нерастворимое в воде;
  • разлагается на воду и оксид меди при нагревании;
  • реагирует с кислотами, образуя соответствующие соли:
    Cu(OH 2) + H 2 SO 4 = CuSO 4 + 2H 2 O;
  • реагирует с растворами щелочей, образуя купраты - комплексные сооединения ярко-синего цвета:
    Cu(OH 2) + 2KOH = K 2 .

Более подробно о соединениях меди см. Оксиды меди .

Получение и применение меди

  • пирометаллургическим методом медь получают из сульфидных руд при высоких температурах:
    CuFeS 2 + O 2 + SiO 2 → Cu + FeSiO 3 + SO 2 ;
  • оксид меди восстанавливается до металлической меди водородом, угарным газом, активными металлами:
    Cu 2 O + H 2 = 2Cu + H 2 O;
    Cu 2 O + CO = 2Cu + CO 2 ;
    Cu 2 O + Mg = 2Cu + MgO.

Применение меди обусловливается ее высокой электро- и теплопроводностью, а также пластичностью:

  • изготовление электрических проводов и кабелей;
  • в теплообменной аппаратуре;
  • в металлургии для получения сплавов: бронзы, латуни, мельхиора;
  • в радиоэлектронике.

Медь

Медь (лат. Cuprum) - химический элемент I группы периодической системы Менделеева (атомный номер 29, атомная масса 63,546). В соединения медь обычно проявляет степени окисления +1 и +2, известны также немногочисленные соединения трехвалентной меди. Важнейшие соединения меди: оксиды Cu 2 O, CuO, Cu 2 O 3 ; гидроксид Cu(OH) 2 , нитрат Cu(NO 3) 2 . 3H 2 O, сульфид CuS, сульфат(медный купорос) CuSO 4 . 5H 2 O, карбонат CuCO 3 Cu(OH) 2 , хлорид CuCl 2 . 2H 2 O.

Медь - один из семи металлов, известных с глубокой древности. Переходный период от каменного к бронзовому веку (4 - 3-е тысячелетие до н.э.) назывался медным веком или халколитом (от греческого chalkos - медь и lithos - камень) или энеолитом (от латинского aeneus - медный и греческого lithos - камень). В этот период появляются медные орудия. Известно, что при возведении пирамиды Хеопса использовались медные инструменты.

Чистая медь - ковкий и мягкий металл красноватого, в изломе розового цвета, местами с бурой и пестрой побежалостью, тяжелый (плотность 8,93 г/см 3), отличный проводник тепла и электричества, уступая в этом отношении только серебру (температура плавления 1083 °C). Медь легко вытягивается в проволоку и прокатывается в тонкие листы, но сравнительно мало активна. В сухом вохдухе и кислороде при нормальных условиях медь не окисляется. Но она достаточно легко вступает в реакции: уже при комнатной температуре с галогенами, например с влажным хлором образует хлорид CuCl 2 , при нагревании с серой образует сульфид Cu 2 S, с селеном. Но с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют, например, соляная и разбавленная серная кислоты. Но в присутствии кислорода воздуха медь растворяется в этих кислотах с образованием соотвествующих солей: 2Cu + 4HCl + O 2 = 2CuCl 2 + 2H 2 O.

В атмосфере, содержащей CO 2 , пары H 2 O и др., покрывается патиной - зеленоватой пленкой основного карбоната (Cu 2 (OH) 2 CO 3)), ядовитого вещества.

Медь входит более чем в 170 минералов, из которых для промышленности важны лишь 17, в том числе: борнит (пестрая медная руда - Cu 5 FeS 4), халькопирит (медный колчедан - CuFeS 2), халькозин (медный блеск - Cu 2 S), ковеллин (CuS), малахит (Cu 2 (OH) 2 CO 3). Встречается также самородная медь.

Плотность меди, удельный вес меди и другие характеристики меди

Плотность - 8,93*10 3 кг/м 3 ;
Удельный вес - 8,93 г/cм 3 ;
Удельная теплоемкость при 20 °C - 0,094 кал/град;
Температура плавления - 1083 °C ;
Удельная теплота плавления - 42 кал/г;
Температура кипения - 2600 °C ;
Коэффициент линейного расширения (при температуре около 20 °C) - 16,7 *10 6 (1/град);
Коэффициент теплопроводности - 335ккал/м*час*град;
Удельное сопротивление при 20 °C - 0,0167 Ом*мм 2 /м;

Модули упругости меди и коэффициент Пуассона


СОЕДИНЕНИЯ МЕДИ

Оксид меди (I) Cu 2 O 3 и закись меди (I) Cu 2 O , как и другие соединения меди (I) менее устойчивы, чем соединения меди (II). Оксид меди (I), или закись меди Cu 2 O в природе встречается в виде минерала куприта. Кроме того, она может быть получена в виде осадка красного оксида меди (I) в результате нагревания раствора соли меди (II) и щелочи в присутствии сильного восстановителя.

Оксид меди (II) , или окись меди, CuO - черное вещество, встречающееся в природе (например в виде минерала тенерита). Его получают прокаливанием гидроксокарбоната меди (II) (CuOH) 2 CO 3 или нитрата меди (II) Cu(NO 2) 2 .
Оксид меди (II) хороший окислитель. Гидроксид меди (II) Cu(OH) 2 осаждается из растворов солей меди (II) при действии щелочей в виде голубой студенистой массы. Уже при слабом нагревании даже под водой он разлагается, превращаясь в черный оксид меди (II).
Гидроксид меди (II) - очень слабое основание. Поэтому растворы солей меди (II) в большинстве случаев имеют кислую реакцию, а со слабыми кислотами медь образует основные соли.

Сульфат меди (II) CuSO 4 в безводном состоянии представляет собой белый порошок, который при поглощении воды синеет. Поэтому он применяется для обнаружения следов влаги в органических жидкостях. Водный раствор сульфата меди имеет характерный сине-голубой цвет. Эта окраска свойственна гидратированным ионам 2+ , поэтому такую же окраску имеют все разбавленные растворы солей меди (II), если только они не содердат каких-либо окрашенных анионов. Из водных растворов сульфат меди кристаллизуется с пятью молекулами воды, образуя прозрачные синие кристаллы медного купороса. Медный купорос применяется для электролитического покрытия металлов медью, для приготовления минеральных красок, а также в качестве исходного вещества при получении других соединений меди. В сельском хозяйстве разбавленный раствор медного купороса применяется для опрыскивания растений и протравливания зерна перед посевом, чтобы уничтожить споры вредных грибков.

Хлорид меди (II) CuCl 2 . 2H 2 O . Образует темно-зеленые кристаллы, легко растворимые в воде. Очень концентрированные растворы хлорида меди (II) имеют зеленый цвет, разбавленные - сине-голубой.

Нитрат меди (II) Cu(NO 3) 2 . 3H 2 O . Получается при растворении меди в азотной кислоте. При нагревании синие кристаллы нитрата меди сначала теряют воду, а затем легко разлагаются с выделением кислорода и бурого диоксида азота, переходя в оксид меди (II).

Гидроксокарбонат меди (II) (CuOH) 2 CO 3 . Встречается в природе в виде минерала малахита, имеющего красивый изумрудно-зеленый цвет. Искусственно приготовляется действием Na 2 CO 3 на растворы солей меди (II).
2CuSO 4 + 2Na 2 CO 3 + H 2 O = (CuOH) 2 CO 3 ↓ + 2Na 2 SO 4 + CO 2
Применяется для получения хлорида меди (II), для приготовления синих и зеленых минеральных красок, а также в пиротехнике.

Ацетат меди (II) Cu (CH 3 COO) 2 . H 2 O . Получается обработкой металлической меди или оксида меди (II) уксусной кислотой. Обычно представляет собой смесь основных солей различного состава и цвета (зеленого и сине-зеленого). Под названием ярь-медянка применяется для приготовления масляной краски.

Комплексные соединения меди образуются в результате соединения двухзарядных ионов меди с молекулами аммиака.
Из солей меди получают разноообразные минеральные краски.
Все соли меди ядовиты. Поэтому, чтобы избежать образования медных солей, медную посуду покрывают изнутри слоем олова (лудят).


ПРОИЗВОДСТВО МЕДИ

Медь добывают из оксидных и сульфидных руд. Из сульфидных руд выплавляют 80% всей добываемой меди. Как правило, медные руды содержат много пустой породы. Поэтому для получения меди используется процесс обогащения. Медь получают методом ее выплавки из сульфидных руд. Процесс состоит из ряда операций: обжига, плавки, конвертирования, огневого и электролитического рафинирования. В процессе обжига большая часть примесных сульфидов превращается в оксиды. Так, главная примесь большинства медных руд пирит FeS 2 превращается в Fe 2 O 3 . Газы, образующиеся при обжиге, содержат CO 2 , который используется для получения серной кислоты. Получающиеся в процессе обжига оксиды железа, цинка и других примесей отделяются в виде шлака при плавке. Жидкий медный штейн (Cu 2 S с примесью FeS) поступает в конвертор, где через него продувают воздух. В ходе конвертирования выделяется диоксид серы и получается черновая или сырая медь. Для извлечения ценных (Au, Ag, Te и т.д.) и для удаления вредных примесей черновая медь подвергается сначала огневому, а затем электролитическому рафинированию. В ходе огневого рафинирования жидкая медь насыщается кислородом. При этом примеси железа, цинка и кобальта окисляются, переходят в шлак и удаляются. А медь разливают в формы. Получающиеся отливки служат анодами при электролитическом рафинировании.
Основным компонентом раствора при электролитическом рафинировании служит сульфат меди - наиболее распространенная и дешевая соль меди. Для увеличения низкой электропроводности сульфата меди в электролит добавляют серную кислоту. А для получения компактного осадка меди в раствор вводят небольшое количество добавок. Металлические примеси, содержащиеся в неочищенной ("черновой") меди, можно разделить на две группы.

1)Fe, Zn, Ni, Co. Эти металлы имеют значительно более отрицательные электродные потенциалы, чем медь. Поэтому они анодно растворяются вместе с медью, но не осаждаются на катоде, а накапливаются в электролите в виде сульфатов. Поэтому электролит необходимо периодически заменять.

2)Au, Ag, Pb, Sn. Благородные металлы (Au, Ag) не претерпевают анодного растворения, а в ходе процесса оседают у анода, образуя вместе с другими примесями анодный шлам, который периодически извлекается. Олово же и свинец растворяются вместе с медью, но в электролите образуют малорастворимые соединения, выпадающие в осадок и также удаляемые.


СПЛАВЫ МЕДИ

Сплавы , повышающие прочность и другие свойства меди, получают введением в нее добавок, таких, как цинк, олово, кремний, свинец, алюминий, марганец, никель. На сплавы идет более 30% меди.

Латуни - сплавы меди с цинком (меди от 60 до 90% и цинка от 40 до 10%) - прочнее меди и менее подвержены окислению. При присадке к латуни кремния и свинца повышаются ее антифрикционные качества, при присадке олова, алюминия, марганца и никеля возрастает антикоррозийная стойкость. Листы, литые изделия используются в машиностроении, особенно в химическом, в оптике и приборостроении, в производстве сеток для целлюлознобумажной промышленности.

Бронзы . Раньше бронзами называли сплавы меди (80-94%) и олова (20-6%). В настоящее время производят безоловянные бронзы, именуемые по главному вслед за медью компоненту.

Алюминиевые бронзы содержат 5-11% алюминия, обладают высокими механическими свойствами в сочетании с антикоррозийной стойкостью.

Свинцовые бронзы , содержащие 25-33% свинца, используют главным образом для изготовления подшипников, работающих при высоких давлениях и больших скоростях скольжения.

Кремниевые бронзы , содержащие 4-5% кремния, применяют как дешевые заменители оловянных бронз.

Бериллиевые бронзы , содержащие 1,8-2,3% бериллия, отличаются твердостью после закалки и высокой упругостью. Их применяют для изготовления пружин и пружинящих изделий.

Кадмиевые бронзы - сплавы меди с небольшим количества кадмия (до1%) - используют для изготовления арматуры водопроводных и газовых линий и в машиностроении.

Припои - сплавы цветных металлов, применяемые при пайке для получения монолитного паяного шва. Среди твердых припоев известен медносеребряный сплав (44,5-45,5% Ag; 29-31%Cu; остальное - цинк).


ПРИМЕНЕНИЕ МЕДИ

Медь, ее соединения и сплавы находят широкое применение в различных отраслях промышленности.

В электротехнике медь используется в чистом виде: в производстве кабельных изделий, шин голого и контактного проводов, электрогенераторов, телефонного и телеграфного оборудования и радиоаппаратуры. Из меди изготавливают теплообменники, вакуум-аппараты, трубопроводы. Более 30% меди идет на сплавы.

Сплавы меди с другими металлами используют в машиностроении, в автомобильной и тракторной промышленности (радиаторы, подшипники), для изготовления химической аппаратуры.

Высокая вязкость и пластичность металла позволяют применять медь для изготовления разнообразных изделий с очень сложным узором. Проволока из красной меди в отожженном состоянии становится настолько мягкой и пластичной, что из нее без труда можно вить всевозможные шнуры и выгибать самые сложные элементы орнамента. Кроме того, проволока из меди легко спаивается сканым серебряным припоем, хорошо серебрится и золотится. Эти свойства меди делают ее незаменимым материалом при производстве филигранных изделий.

Коэффициент линейного и объемного расширения меди при нагревании приблизительно такой же, как у горячих эмалей, в связи с чем при остывании эмаль хорошо держится на медном изделии, не трескается, не отскакивает. Благодаря этому мастера для производства эмалевых изделий предпочитают медь всем другим металлам.

Как и некоторые другие металлы, медь входит в число жизненно важных микроэлементов . Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата - медного купороса CuSO 4 . 5H 2 O. В большом количестве он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь необходима всему живому.