Все параметры, используемые для характеристик технологических процессов, можно объединить в три группы. К первой группе параметров относятся те, которые характеризуют индивидуальные особенности конкретных технологических процессов. Это могут быть параметры собственно технологического процесса (давление, температура, состав сырья и т.п.), технические характеристики оборудования, схемы компоновки оборудования и др. Данная группа параметров позволяет выделить конкретный технологический процесс из ряда однотипных, но не дает возможности проследить его развитие под действием различных факторов. Ко второй группе параметров относятся те, которые характеризуют ряд однотипных технологических процессов. Среди них - энергоемкость, фондоемкость, расход различных видов материальных ресурсов на единицу продукции и металлоемкость, параметры производительности и т.п. Параметры данной группы дают возможность сравнивать различные наборы однотипных технологических процессов между собой, но не позволяют выявить закономерности развития всего ряда однотипных технологических процессов. Итак, параметры обеих групп позволяют достаточно полно охарактеризовать конкретный технологический процесс и ряд однотипных технологических процессов. Однако они не могут быть использованы для выявления закономерностей развития технологических процессов в общем виде, а это необходимо для изучения динамики развития производственных систем и научно-технического развития в целом. Параметрами третьей группы, которые обладают наибольшей общностью, а, следовательно, могут быть использованы для выявления закономерностей развития технологических процессов, являются живой и прошлый труд, затрачиваемые внутри технологического процесса. В любом производственном процессе имеют место затраты живого и овеществленного труда. Совершенствование любого технологического процесса осуществляется при повышении эффективности использования прошлого труда и снижения затрат живого труда. Для характеристики технологического процесса необходимо знать соотношение живого и овеществленного труда в данном процессе. Целесообразность этих параметров объясняется и тем, что они связаны с такой основополагающей характеристикой, как производительность труда. Одним из относительных показателей соотношения живого и овеществленного труда в конкретном технологическом процессе является технологическая вооруженность, представляющая собой долю технологических фондов, приходящихся на одного работающего в данном технологическом процессе. Технологические фонды - это годовые затраты прошло­го труда в технологическом процессе. Они определяются как сумма годовых амортизационных отчислений от стоимости оборудования, занятого в технологическом процессе, и всех годовых технологических затрат в этом процессе, за исклю­чением затрат на предмет труда. Таким образом, технологическая вооруженность показывает количество прошлого труда переносимым на предмет труда одним рабочим.

5. Классификация технологических процессов.

В основу классификации технологических процессов положены различные признаки, такие как: вид воздействия на сырье и характер его качественных изменений; способ организации производства; кратность обработки сырья. По характеру качественных изменений сырья технологические процессы подразделяются на физические, механические и химические процессы. При физических и механических процессах переработки сырья происходит изменение размеров, формы и физических свойств сырья. При этом внутреннее строение и состав вещества не изменяется. Например: изготовление металлических деталей методом обработки резанием; дробление, измельчение вещества; приготовление растворов и т.п. Химические п роцессы характеризуются изменением не только физических свойств, но и агрегатного состояния, химического состава и внутреннего строения вещества. Например, обжигом до спекания частиц сырьевой смеси получают портландцементный клинкер, вяжущие свойства которого обусловлены возникновением при высокой температуре (14500 оС) новых химических соединений (новообразований). Химической переработкой топлива (коксования углей) получают бензол, нафталин, водород, метан, этилен и другие продукты. Однако деление процессов на физические, механические и химические является условным, так как трудно провести четкую границу между ними, поскольку механические процессы часто сопровождаются изменением и физических, и химических свойств.

По способу организации технологические процессы делятся на дискретные (прерывистые) и непрерывные процессы. Дискретный технологический процесс характеризуется чередованием рабочих и вспомогательных ходов с четким разграничением их по времени реализации. Например, при металлообработке происходят установка детали в патрон станка (вспомогательный ход), подвод режущего инструмента (вспомогательный ход), обработка заготовки режущим инструментом (рабочий ход), контроль (вспомогательный ход) снятие детали со станка, установка в патрон станка новой заготовки и т.д. (вспомогательный ход).Такие технологические процессы чаще всего распространены в машиностроении, строительстве, добывающих отраслях промышленности. Недостатком дискретных технологических процессов являются потери рабочего времени в процессе выполнения вспомогательных ходов, так как в это время простаивает основное технологическое оборудование, и выпуск продукции не производится. Затраты труда увеличиваются. Так, в обработке металлов резанием доля основного (технологического) времени в штучном времени составляет менее 50%. Непрерывные процессы отличаются тем, что они не имеют резко выраженного чередования (во времени осуществления) рабочего и вспомогательного ходов. В них всегда можно выделить группу вспомогательных ходов, которые осуществляются одновременно с рабочими, и группу вспомогательных ходов, которые периодически повторяются во времени, в зависимости от результатов рабочего хода. Такие процессы, характерны для химической промышленности металлургии, энергетике. По кратности обработки сырья технологические процессы подразделяются на процессы с открытой (разомкнутой) схемой и процессы с циркуляционной (замкнутой) схемой. В процессах с разомкнутой схемой сырье подвергается однократной обработке. В процессах с замкнутой схемой сырье неоднократно возвращается в начальную стадию процесса для последующей обработки. Примером процесса с открытой схемой производства может служить любая технология, в которой вход (начальная операция) и выход (заключительная операция) не соединяются - технология изготовления бетона. Процесс с замкнутой схемой - оборотное водоснабжение (циркуляция воды в технологическом процессе после ее очистки). Процессы с замкнутой схемой производства являются более экономичными и экологически безвредными, хотя они и отличаются большей сложностью. Эти процессы необходимы при переводе технологии на безотходную. В производстве часто применяются процессы, сочетающие элементы открытой и закрытой схем. Примером такого процесса может служить технологический процесс производства азотной кислоты, в котором одни промежуточные продукты обрабатываются по открытой схеме, проходя последовательно ряд аппаратов, а другие циркулируют по замкнутой схеме.В общем виде любой технологический процесс можно рассматривать в виде кибернетической схемы, имеющую вход, «черный ящик» и выход. На входе – исходные ресурсы и их свойства, на выходе – готовый продукт с конкретными характеристиками, «черный ящик» - все возможные способы изготовления продукта (изделия).

Основными технологическими характеристиками текстильных волокон являются: длина, толщина, прочность, относительное удлинение при растяжении, плотность, извитость, рассыпчатость, дефектность, электризуемость и др.

Длина волокон хлопка, шерсти, лубяных и химических волокон находится в прямой связи с толщиной и прочностью пряжи. Она определяет выбор систем прядения. С учетом длины волокон устанавливают режим обработки волокнистых материалов и получения пряжи. Чем длиннее волокно, тем меньшую можно держать крутку пряжи, тем больше число контактов между волокнами. Следовательно, из более длинного волокна при одинаковой крутке можно получить более прочную пряжу. Натуральные волокна различаются между собой по длине. Так, например, в хлопковой массе со средней длиной волокна 31...32 мм имеются волокна длиной от 6 до 50 мм, а в однородной тонкой шерсти при средней длине 55 мм - от 8 до 100 мм.

Толщина волокна характеризует его поперечный размер. Чем меньше толщина волокон, тем более тонкую, равномерную и прочную пряжу можно из них выработать. Чем прочнее пряжа, тем меньше обрывность ее в прядении и ткачестве, тем выше производительность труда. Из тонкой пряжи можно выработать тонкие и легкие ткани и трикотажные изделия. Линейная плотность волокна измеряется в тексах (г/км) как отношение массы (г) к длине волокна (км).

Под извитостью понимают количество извитков, приходящихся на 1 см длины волокна. От нее зависит технология переработки волокон, качество получаемых пряжи и изделий. Извитость волокон придает пряже, тканям, трикотажу пушистость, эластичность, объемность, за счет чего обеспечивается их более низкая теплопроводность.

Прочность волокна - способность воспринимать без разрушения растягивающие усилия. Абсолютная прочность (разрывная нагрузка) определяется усилием, приложенным к волокну, при котором оно разрывается. Усилие выражается в ньютонах. Относительная прочность (удельная разрывная нагрузка) - это усилие, вызывающее разрыв волокна, отнесенное к линейной плотности волокна. Чем прочнее волокно и чем оно более однородно по прочности, тем легче технологический процесс его обработки, меньше обрывность волокон, выше выход продукции и производительность труда в чесании и прядении.

Дефектность химических волокон характеризуется наличием склеек, мушек, жгутиков и других дефектов, возникающих в процессе производства и переработки этих волокон.

Химические волокна в текстильной промышленности - дополнительное дешевое высококачественное сырье.

При переработке химических волокон методом штапелирования по сравнению с обычным способом переработки штапельного волокна расходы электроэнергии сокращаются примерно в 5 раз, производительность труда повышается почти в 2 раза.

При использовании химических волокон повышается выход пряжи из смеси (на 1...3 %), снижается себестоимость изготовляемых тканей и изделий. Так, себестоимость трикотажного жакета из чистой шерсти примерно в 4 раза выше себестоимости изделия того же размера из высокообъемной нитроновой пряжи.

С введением 5...10 % капронового волокна стойкость тканей к истиранию увеличивается в 1,8...2 раза. Добавление к шерсти 50...55 % лавсановых волокон способствует повышению прочности ткани, ее сопротивления к истиранию, стойкости к сминаемости. Изделия из нитроновых волокон в смеси с вискозными обладают повышенной прочностью, объемностью и шерстистостью.

Применение профилированных и полых химических волокон позволяет вырабатывать более легкие и объемные ткани и трикотажные изделия, а также экономить до 30...40 % сырья в текстильной промышленности. Кроме того, ткани из лавсана и объемной пряжи мало уступают по качеству чистошерстяным, а по ряду свойств даже превосходят их. Добавление синтетических волокон с натуральным обусловливает удешевление текстильных изделий.

Система прядения

Совокупность машин и процессов, посредством которых волокна перерабатывают в определенный вид пряжи, называется системой прядения.

Системы прядения различаются по числу переходов, их назначению, виду, качеству сырья и качеству вырабатываемой продукции. Но в системах прядения различных волокон разные процессы имеют одно и то же назначение, например процессы разрыхления и чесания в аппаратной и гребенной системах получения шерстяной пряжи, процесс гребнечесания в гребенных системах получения пряжи из хлопковых и шерстяных волокон. Кардная система прядения используется для переработки хлопковых волокон, но может быть применена и для прядения шерстяных, коротких льняных (льняного очеса) и химических волокон. Поэтому кардную, гребенную и аппаратную системы прядения можно рассматривать как типовые.

Кардная система прядения

Получение пряжи из хлопковых волокон по кардной системе прядения включает пять основных технологических переходов: 1) разрыхление, очистку и смешивание волокон; 2) кардочесание на чесальных, валичных и шляпочных машинах; 3) сложение и вытягивание лент; 4) предпрядение и 5) прядение (формирование пряжи).

Указанная система прядения широко используется в производстве пряжи линейной плотностью 15,5...84 текс, которую вырабатывают из средневолокнистого хлопкового и химического волокна. Кроме того, кардную систему прядения можно применять для изготовления льняной пряжи из короткого волокна и очеса (котонина), меланжевой пряжи из хлопка и штапельных химических волокон, окрашенных в разные цвета.

Хлопок поступает на предприятия в вагонах отдельными партиями по 60...70 кип, которые называются марками. На складе каждую партию (марку) размещают отдельно друг от друга, т. к. волокна в марках и кипах отличаются по технологическим свойствам и прежде всего по длине, толщине, прочности и извитости. При переработке хлопка производят составление смеси (сортировки) волокон из нескольких партий (марок). Подбор марок ведется так, чтобы различие технологических свойств волокон было незначительным. Различают хлопковые волокна семи типов, характеризующиеся длиной, толщиной и прочностью. Волокна первого типа - самые длинные, тонкие и прочные, седьмого - очень короткие, грубые и весьма слабые по прочности.

Каждая сортировка обозначается двумя цифрами. Первая цифра обозначает тип, а вторая - сорт волокна, составляющего в данной сортировке не менее 65 %. Так, например, сортировка 4-1 состоит из хлопка 4-го типа и содержит не менее 65 % волокон первого сорта. Выбор сортировки определяется требуемым качеством пряжи. Так, хлопковые волокна сортировок 1-1, 2-1, 3-1 (т. е. первых трех типов и первых сортов) используют для производства гребенной пряжи, четвертого типа второго и третьего сортов - для изготовления кардной пряжи разной толщины.

Разрыхление волокон заключается в разделении плотно спрессованного в кипах волокнистого материала на мелкие клочки и очистке его от растительных и минеральных примесей с целью обеспечения хорошего смешивания волокон и чесания. Разрыхление осуществляется под воздействием на материал зубьев или игл рабочих органов машин, где происходит рыхление, частичная очистка и смешивание хлопковых волокон.

Далее волокно поступает на чесальные машины холстового или бункерного питания, где происходит разъединение клочков на отдельные волокна, параллелизация волокон, очистка и формирование ленты. Производительность чесальных машин, предназначенных для обработки хлопковых волокон, составляет 50…90 кг/ч.

После чесания лента поступает на ленточные машины, где происходит сложение и вытягивание лент с целью уменьшения неровности по толщине его, составу и структуре. Степень ровности ленты увеличивается с ростом числа сложений.

Вытягивание ленты предназначено для распрямления волокон, обеспечения параллельности их в продукте и получения ровницы или пряжи заданной толщины. Вытягивание (утонение) продукта на трепальных и гребнечесальных машинах происходит с разрушением структуры и формы продукта. Затем из разрушенного волокнистого материала формируется продукт новой формы. Вытягивание волокон на ленточных, ровничных и прядильных машинах протекает иначе. В процессе вытягивания волокна сдвигаются друг относительно друга и формируют ленту большой длины. При этом число волокон в поперечном сечении продукта уменьшается, и он становится тоньше. При таком вытягивании волокна, составляющие продукт, не теряют связи друг с другом.

В настоящее время на ровничных и прядильных машинах стало возможным вырабатывать пряжу малой и средней толщины с одним переходом на ровничных машинах или однопроцессным методом прядения непосредственно из ленты.

В процессе прядения из ровницы или ленты получают пряжу. Пряжей называют неопределенно длинные, тонкие и гибкие нити, состоящие из относительно коротких волокон, соединенных между собой путем скручивания на прядильной машине.

На современных текстильных предприятиях для изготовления пряжи применяют кольцепрядильные машины. В вытяжном приборе машины продукт утоняется путем вытягивания до заданной толщины и скручивается с помощью веретена и бегунка.

Влияние электрического и электромагнитного поля на функциональные свойства SATA в системе ПК

Влияние температуры на параметры SATA (изменение механических и электропроводных свойств)

Физические свойства связи в SATA не изменяются в том диапазоне температур, которые рекомендованы для ПК

Интерфейс подвержен влиянию высокочастотных электромагнитных полей

Высокая производительность: Serial-ATA быстрее, чем параллельный ATA. Из-за последовательной организации Serial-ATA нуждается только в двух проводниках - один для посылки, другой для получения данных. При передаче множественных сигналов, синхронизированных по фазе, происходит их взаимовлияние, отрицательно сказывающееся на качестве связи. Когда же два сигнала передаются в противофазе, необходимость в экранировании проводников отпадает.

Снижение напряжения сигнала. Serial-ATA не требует высокого напряжения на сигнальных проводниках (амплитуда 500 милливольт), что снимает проблему согласования различных уровней напряжений на шлейфе и материнской плате. Снижение напряжения означает улучшенное энергосбережение, а это особенно актуально в мобильных устройствах (где важно не только экономное потребление энергии, но и миниатюрность, и гибкость кабеля).



Маленькие в поперечнике, легкие для монтажа, более длинные кабели. Serial-ATA меняет широкий PATA-шлейф на узкий, длина которого может достигать 1 м. Новый кабель легко направить по любому маршруту в системном блоке. Его маленький поперечник способствует улучшению отвода тепла от "горячих" мест. Кроме того, дизайн этих кабелей согласуется с общей тенденцией изменений в архитектуре системного блока. Маленькое число проводников делает ненужной широкую и громоздкую контактную площадку, облегчая инсталляцию дисков. Увеличенная длина кабеля делает возможным применение внешних Serial-ATA-дисков. Повышенная ошибкоустойчивость данных. Serial-ATA предлагает более полную проверку ошибок и методы их исправления, в сравнениии с PATA. Новая шина гарантирует непрерывную и безошибочную передачу данных и команд. Увеличенная скорость передачи данных между диском и другими компонентами. Известно, что сегодня скорость передачи данных с жестких дисков не может достигнуть даже уровня ATA100, так почему же надо переходить на Serial-ATA? Максимальная внутренняя скорость передачи данных в большинстве IDE - дисков сегодня не превышает ~72 Мб/сек. Т.е. предел ATA/100 еще не достигнут. Но основная причина того, что скорость передачи данных с IDE - устройств находится на низком уровне, состоит в том, что единственный путь (шлейф) должен быть разделен между двумя устройствами. Serial-ATA позволит дискам продолжать повышение своей производительности, сохраняя ценовой паритет с PATA. Совместимость сверху вниз. Serial-ATA обеспечивает обратную совместимость со своими предками PATA и ATAPI, что достигается двумя различными способами. Во-первых, вы можете использовать чипсетную поддержку SATA-устройств или установить отдельные компоненты, обеспечивающие поддержку Serial-ATA-дисков. Эти отдельные компоненты легкодоступны и могут быть приобретены либо отдельно, либо в составе материнской платы. Во-вторых, можно использовать последовательные или параллельные переходники, которые осуществляют трансляцию сигнала с SATA в РATA или наоборот. подключение к одному каналу только одного устройства.


К обычному Parallel ATA можно подключить два устройства, дав им атрибуты "Master" и "Slave". Serial ATA рассчитан только на соединение "точка-точка". Большинство SATA-контроллеров, включая встроенные в чипсет, оснащены двумя каналами и потому позволяют подключить только два устройства. Поэтому первое время придется использовать оба интерфейса - Serial ATA для винчестеров и Parallel ATA для оптических накопителей (DVD, CD).возможность "горячего" подключения/отключения устройств. Для Parallel ATA эта возможность тоже существует (вспомним Mobile Rack), но она неофициальная и не поддерживается со стороны системы - BIOS, драйверов, операционной системы. У Serial ATA есть все возможности для реализации "горячего" подключения: разъем сконструирован таким образом, чтобы при подключении кабеля сначала в контакт входили линии "земли", а потом интерфейса. Это позволяет избежать тех неприятностей, от которых не застрахованы обычные винчестеры - сгорания микросхем при подключении "по-горячему".встроенная поддержка механизма переупорядочивания команд (NCQ - Native Command Queuing). Это один из методов увеличения производительности жесткого диска: поток запросов на чтение и запись перестраивается таким образом, чтобы наиболее ресурсоемкие операции (у винчестера это операции позиционирования головок) выполнялись оптимальнее. Например, чем ближе два блока секторов, к которым выполняется доступ, тем меньше времени потребуется на переключение между ними. Контроллер винчестера может перестроить запросы так, чтобы минимально перемещать головки. Впрочем, первая версия Serial ATA имеет очень ограниченную поддержку переупорядочивания команд. Широкое использование этого механизма начнется с внедрения интерфейса Serial ATA II, в котором предусмотрены средства асинхронного возврата состояния, управления тэгами команд, инициирования обмена по каналу DMA со стороны винчестера, частичного заполнения блока данных и т.п.

ПЕРЕГРУЗОЧНЫХ МАШИН

Технологические возможности перегрузочных машин определяются типом, назначением, конструктивными особенностями, размерными и скоростными параметрами, способом перемещения груза, способностью использовать разные грузозахватные приспособления и выполнять те или иные технологические операции. Основным перегрузочным оборудованием портов в настоящее время являются разного типа краны (портальные, козловые, мостовые, гусеничные, автомобильные, мобильные на пневмоходу, плавучие). Все краны при соответствующем исполнении механизма подъема могут перегружать генеральные, навалочные, насыпные и особые грузы.

Портальные краны - это универсальные перегрузочные машины, которые можно использовать для производства работ на причалах, складах, автомобильных и железнодорожных грузовых фронтах. Основная характеристика кранов - грузоподъемность. Размерные параметры портальных кранов: колея портала, габарит портала вдоль рельсов, максимальный вылет стрелы, высота подъема груза над головкой рельса и опускания ниже ее. Скоростные параметры - скорости движений. Все движения портальных кранов, кроме передвижения портала, являются рабочими, т. е. могут выполняться в течение каждого цикла перемещения груза. Передвижение портала является установочным движением и должно осуществляться только при переходе с одного места работы на другое. Важной характеристикой портальных кранов является способность механизма подъема работать в грейферном режиме двумя канатами либо двумя парами канатов. Она определяет возможность использования крана для перегрузки навалочных и насыпных грузов грейфером, а также применения различных управляемых захватных устройств для генеральных и особых грузов, привод которых осуществляется при работе механизма подъема в грейферном режиме.



Достоинствами портальных кранов являются: их универсальность по грузу и месту работы, значительная гибкость во взаимодействии между собой и с другими машинами на складской площадке, представляющей совместную зону обслуживания. Последнее качество позволяет успешно подменять портальные краны в период ремонта без образования «мертвых зон», а также дает возможность передавать груз непосредственно от одного крана другому в различных комбинациях и концентрировать, при необходимости, на небольшом участке работ сразу несколько кранов.

Недостатки портальных кранов: большая высота подвеса груза, отсутствие (как правило) пространственной запасовки канатов и: ложность стабилизации положения груза при повороте крана, что в комплексе затрудняет автоматизацию управления краном, вызывает значительное раскачивание и вращение груза вокруг вертикальной оси подвеса, весьма усложняет применение автоматических и управляемых захватов для генеральных грузов. Кроме того, портальные краны по сравнению с козловыми и мостовыми более сложны по конструкции, имеют большую массу, энергоемкость и стоимость в постройке и обслуживании.

Козловые и мостовые краны в морских портах обычно обслуживают склады, железнодорожные и автомобильные грузовые фронты. На причалах их используют реже. Основная характеристика - грузоподъемность. Размерные параметры - колея (пролет моста), вылет консолей, габаритный размер вдоль рельсов, высота подъема груза. Скоростные параметры - скорости движений. Все движения являются рабочими.

Козловые и мостовые краны по сравнению с портальными имеют меньшую высоту подвеса груза, отсутствует движение поворота крана, для них легче решать вопросы пространственной запасовки канатов. Вследствие этого значительно меньше раскачивание груза, лучше стабилизация его положения, проще автоматизация управления и использование автоматических и управляемых захватов. Эти краны более просты, чем портальные, по конструкции, имеют меньшую массу, энергоемкость и стоимость в постройке и эксплуатации. Основной недостаток козловых кранов - меньшая гибкость по сравнению с портальными во взаимодействии между собой и с другими машинами на складских и оперативных площадках. Именно по этой причине на причалах козловые краны используют редко, в основном для перегрузки однородных навалочных и лесных грузов. Мостовые краны предназначены для обслуживания крытых помещений.

Гусеничные, пневмоколесные и автомобильные краны в портах целесообразно использовать для обслуживания тыловых складов и грузовых фронтов, расположенных вне зоны действия рельсовых кранов и не требующих высокой интенсивности производства работ. При этом гусеничные краны более приспособлены для работы на площадках с грунтовым покрытием. Основная характеристика - грузоподъемность. Размерные параметры - вылет стрелы, габаритные размеры в плане и наименьший радиус поворота ходовой части. Если краны имеют выносные опоры (аутригеры), то отдельно учитывают размеры с аутригерами в рабочем положении. Скоростные параметры - скорости движений. Все движения крана можно использовать как рабочие, кроме изменения вылета стрелы, которое некоторые краны не могут производить с поднятым грузом. Если масса поднимаемого груза приближается к номинальной грузоподъемности крана и требуется использование аутригеров, передвижение крана нельзя использовать как рабочее движение.

По сравнению с рельсовыми гусеничные, автомобильные и пневмоколесные краны имеют, как правило, значительно меньшую производительность, для них необходимы широкие, густо расположенные проезды на обслуживаемой территории, что существенно ухудшает полезное использование площади складов и грузовых фронтов.

Рис.7. Причальный контейнерный перегружатель

Рис. 8. Портальный погрузчик для крупнотоннажных контейнеров

Плавучие краны в портах предназначены для производства работ на судах и прикордонной территории причалов. К их характеристике относят грузоподъемность, вылет стрелы за борт понтона, высоту подъема груза над уровнем воды и опускания ниже этого уровня, размеры понтона в плане, осадку с грузом, удельную нагрузку на палубу понтона, наличие либо отсутствие движения поворота стрелы, способность изменять вылет стрелы с поднятым грузом, количество подъемных крюков и возможность их параллельного использования, наличие либо отсутствие специальных механизмов для разворота груза вокруг вертикальной оси. К скоростным параметрам (кроме скорости подъема груза, изменения вылета стрелы, поворота стрелы) относят еще скорость хода (если кран самоходный).

Крановые перегружатели используют в портах в достаточно большом количестве. Они представляют собой специальные подъемно-транспортные машины для перегрузки определенных грузов на специальных технологических комплексах. Применяют их обычно на причалах. Основные характеристики, кроме типа и назначения, - грузоподъемность, размерные параметры и скорости рабочих и установочных движений. У таких машин движение поворота вообще отсутствует, либо оно является установочным движением. В отличие от портальных, гусеничных, пневмоколесных, автомобильных и плавучих кранов перегружатели имеют значительно большую производительность и относительно легко поддаются автоматизации управления. Перегружатели предназначены для работы автоматическими и управляемыми из кабины грузозахватными механизмами.

Автопогрузчики (фронтальные, боковые, фронтально-боковые, портальные и специальные) широко используют в портах на судовых, складских, вагонных, автотранспортных и внутриконтейнерных операциях с генеральными, лесными и особыми грузами. К их характеристике относят: тип, род привода (от двигателя внутреннего сгорания или электропривод с питанием от аккумуляторной батареи), тип колес (грузошины либо пневмошины), грузоподъемность, максимальная высота подъема груза, строительная высота и габаритные размеры машины в плане, высота подъема без увеличения строительной высоты машины (величина свободного подъема), расстояние от передней спинки вил до центра тяжести груза при номинальной грузоподъемности и расстояние от оси передних колес до передней спинки вил (либо максимальный грузовой момент), минимальный радиус поворота, масса машины порожнем и с грузом, максимальная нагрузка на оси, скорости всех движений, давление в гидравлической системе, количество секций в распределителе для подключения грузозахватных органов, конструкция мест крепления захватных органов, наличие нейтрализатора либо дожигателя выхлопных газов (для машин с приводом от двигателя внутреннего сгорания) и продолжительность работы погрузчика без смены либо перезарядки батареи (для машин с электроприводом). Наиболее распространены фронтальные погрузчики. При грузоподъемности до 2 т их в основном используют в вагонах, автомашинах, контейнерах, на ролл-трейлерах, а также в твиндеках судов. Эти же погрузчики, но с большей высотой подъема (как правило, с двойной телескопией в грузоподъемнике) могут успешно работать в трюмах судов и на складах. Автопогрузчики грузоподъемностью от 2 до 10 т предназначены для работы в трюмах судов и на складах. Машины большей грузоподъемности применяют на складских работах. Боковые, фронтально-боковые и портальные погрузчики (рис. 8) предназначены для перегрузки некоторых грузов (контейнеров, леса и стального проката) на складах, их используют чаще всего на специальных комплексах.

Погрузчики с приводом от двигателя внутреннего сгорания из-за большей динамичности и скорости рабочих движений, неограниченной продолжительности непрерывной работы в течение всей смены и даже суток имеют при прочих равных условиях в 2-4 раза большую производительность, чем электропогрузчики. Поэтому их чаще, чем электропогрузчики, применяют на портовых перегрузочных работах, характеризующихся высокой интенсивностью, несмотря на сложность защиты окружающей среды от выхлопных газов. При грузоподъемности более 1,5 т, как правило, применяют погрузчики с пневмошинами.

На внутренних транспортных операциях, а также на судовых операциях при обработке ролкеров используют различные универсальные и специальные автотранспортные средства: автомашины бортовые с двухосными и одноосными прицепами и полуприцепами, автотягачи с трейлерами, специальные портовые тягачи с контейнерными тележками и полуприцепами, колесные тракторы с двухосными прицепами и трейлерами. К технологической характеристике этих машин относят тяговое усилие, габаритные размеры, массу и нагрузку на оси, минимальный радиус поворота, размеры грузовой платформы и оснащенность ее средствами крепления груза, тип сцепного устройства, способность машины двигаться на рабочих скоростях передним и задним ходом, скорость передвижения и других рабочих движений.

Некоторые колесные тракторы с ковшами и отвалами различного типа успешно используют на судовых работах с навалочными и насыпными грузами (для подачи груза в подпалубное пространство или обратно). Их характеристику составляет тип, назначение, масса машины и нагрузка на оси, габаритные размеры, минимальный радиус поворота, скорости движений, вместимость и тип ковша.

Гусеничные тракторы, как правило, применяют с прямым или обратным отвалом в качестве бульдозеров на складских и судовых работах с навалочными и некоторыми насыпными грузами. Их технологическая характеристика: тяговое усилие, габаритные размеры и масса.

В составе специальных портовых перегрузочных комплексов для навалочных и насыпных грузов используют различные специальные подъемно-транспортные машины: причальные погрузочные и разгрузочные машины, конвейеры, штабелеобразователи, штабелеразборщики, элеваторы, вагоноопрокидыватели и др. Их технологические возможности характеризуются типом, назначением, производительностью, расстоянием транспортирования, размерами зоны обслуживания, технологическими особенностями работы и габаритными размерами. Эти машины имеют весьма высокую производительность, в несколько раз или даже в несколько десятков раз превышающую производительность портальных кранов.

На судовых и вагонных операциях с навалочными и насыпными грузами применяют целый ряд специальных машин: МВС используют для выгрузки из крытых вагонов хлористого калия и других химических грузов насыпью, ПТС - для подачи навалочных грузов в подпалубное пространство универсальных сухогрузных судов, ПСГ - для обратной операции при выгрузке насыпных и навалочных грузов из подпалубного пространства на просвет люка и др. Эти машины характеризуются типом, назначением, производительностью, массой и габаритными размерами, расстоянием перемещения груза и некоторыми специфическими параметрами.

Широко распространен в портах пневмотранспорт. Его применяют для перегрузки насыпных грузов, в первую очередь зерновых. Машины пневматического транспорта подразделены на береговые стационарные и передвижные, плавучие и мобильные. Береговые имеют, как правило, электропривод от сети, плавучие - электропривод от дизель-генераторов, мобильные снабжены дизельным приводом либо электроприводом от сети. Береговые машины предназначены для работы в составе специальных перегрузочных комплексов, мобильные - для производства работ на универсальных комплексах, как правило, по прямому варианту из судов в вагоны или из судов в суда. Основным назначением плавучих пневмоперегружателей является перемещение груза из крупнотоннажных морских судов в лихтеры, баржи и другие речные суда малого тоннажа. Технологическую характеристику этих машин составляют, кроме типа, назначения и рода привода, еще производительность, расстояние перемещения груза, габаритные размеры, масса (для мобильных машин), степень автоматизации и продолжительность операций по сборке, настройке и демонтажу трасс трубопроводов. Береговые и плавучие машины имеют обычно в своем составе от двух до четырех технологических линий, высокую технологическую производительность каждой линии (100 т/ч и более) и высокую степень механизации и автоматизации основных технологических и подготовительно-заключительных операций. Мобильные машины при достаточно большой технической производительности (60-80 т/ч) имеют весьма низкую технологическую производительность (от 10 до 25 т/ч), являющуюся следствием наличия большого числа весьма трудоемких и длительных ручных операций по сборке, налаживанию и демонтажу трасс трубопроводов, при которых весьма сложно или вообще невозможно на практике выдержать требования к качеству трассы, выполнение которых необходимо для эффективной работы машины


Ряд приемов, проводимых для получения из исходного сырья продукта с заранее заданными свойствами, называют технологическим процессом.

Для описания отдельно взятого технологического процесса или сопоставления его с другими процессами используют различные показатели или параметры технологического процесса.

Материальными характеристиками технологического процесса явл. технологические параметры. Параметрами могут быть механические, электрические, тепловые, временные или др. величины.

Все параметры технологического процесса условно делят на три группы:

- частные параметры, позволяющие сопоставлять технологические процессы, выпускающие одну и ту же продукцию и использующие одну и ту же технологию. К частным параметрам относятся: состав и концентрация исходного сырья, особенности используемого оборудования и инструментов, режимы проведения процесса (температура, давление) и т.д.;

- единичные параметры, позволяющие сравнивать технологические процессы, выпускающие одну и ту же продукцию, но использующие разную технологию. К единичным параметрам относят ресурсные параметры (материалоемкость, трудоемкость, энергоемкость, капиталоемкость), а также такой интегральный показатель, как себестоимость, который выражает фактические затраты ресурсов в денежном выражении на производство и реализацию продукции;

- обобщенные параметры, которые позволяют сравнивать разнообразные технологические процессы. К ним относят в первую очередь удельные, т.е. приходящиеся на единицу продукции, рассчитанные в денежном выражении затраты живого (человеческого) труда и прошлого (овещественного) машинного труда.

Инструменты, предмет труда за редким искл. не наход. в пост. контакте, поэтому необход. пространственное перемещение обеспеч. этот контакт и взаимодействие. Таким образам основной частью элементарного акта преобразов. предмета труда в продукцию явл. процесс непосредств. воздействия инструмента на предмет труда. Эту элементарную часть техн. процесса назыв. рабочий ход. Рабочий ход приводит к измен. свойств предмета труда в сторону готового продукта. Вспомогательной частью преобр. предмета труда в продукт явл. пространственность совмещения с предметом труда. Эта часть вспомог. процесса назыв. вспомог. ходом.

Совокупность рабочих и вспомогательных ходов образует технологический переход.

Для выполн. технологич. перехода как правило необходимо осуществить свою группу вспомог. действий, но более высокого Ур. Она включает действия по закркплению инстументов и деталей, переналадки оборудования и т. д. Эти действия назыв. вспомог. переходом.

Технологич. и вспомог. переход образуют технологическую операцию. Для её выполн. также нужны вспомог. действия.Технологич. операция предшествует транспортировке предмета труда от одного оборудования к др., загрузка и выпуска, перемещ. одного, закрепление и снятие деталей.Эта группа вспомог. дейстий назыв. вспомогат. операция.

Пройдя ряд технологич. и вспомог. операций предмет труда преобраз. в продукт, т. е.

совокупность операций приводит к изгот. продукта, что явл. непосредств. целью

Для осуществления технологических процессов используются аппараты и машины. Аппаратом называется устройство или приспособление, предназначенное для проведения того или иного технологического процесса (варочный котел, кипятильник и др.). Под термином «машина» понимают механизм (или сочетание механизмов и вспомогательных устройств), предназначенный для преобразования механической энергии в полезную работу.

Технологические процессы могут быть разделены на общие (основные) и специфические. При всем разнообразии технологических процессов в пищевых или химических производствах многие из них являются общими для различных производств. В любом производстве встречается, например, перемешивание, необходимое для обеспечения контакта между реагирующими веществами. В сахарном, ликероводочном, спиртовом и многих других производствах применяется выпаривание с целью повышения концентрации сухих веществ в растворах. Процесс сушки является завершающим этапом в производстве сухарей, макарон, сахара, многих кондитерских изделий, сухих молочных продуктов, овощей и фруктов, витаминов, влажного зерна и др. Во всех пищевых производствах применяются процессы охлаждения и нагревания.